Files
OpenSK/README.md
2021-02-08 21:44:22 +01:00

214 lines
9.4 KiB
Markdown

# <img alt="OpenSK logo" src="docs/img/OpenSK.svg" width="200px">
![markdownlint](https://github.com/google/OpenSK/workflows/markdownlint/badge.svg?branch=master)
![pylint](https://github.com/google/OpenSK/workflows/pylint/badge.svg?branch=master)
![Cargo check](https://github.com/google/OpenSK/workflows/Cargo%20check/badge.svg?branch=master)
![Cargo format](https://github.com/google/OpenSK/workflows/Cargo%20format/badge.svg?branch=master)
## OpenSK
This repository contains a Rust implementation of a
[FIDO2](https://fidoalliance.org/fido2/) authenticator.
We developed this as a [Tock OS](https://tockos.org) application and it has been
successfully tested on the following boards:
* [Nordic nRF52840-DK](https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK)
* [Nordic nRF52840-dongle](https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-Dongle)
## Disclaimer
This project is **proof-of-concept and a research platform**. It is **NOT**
meant for a daily usage. It's still under development and as such comes with a
few limitations:
### FIDO2
The stable branch implements the published
[CTAP2.0 specifications](https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html),
but our implementation was not reviewed nor officially tested and doesn't claim
to be FIDO Certified. It already contains some preview features of 2.1, that you
can try by adding the flag `--ctap2.1` to the deploy command.
The develop branch offers only the
[CTAP2.1 specifications](https://fidoalliance.org/specs/fido-v2.1-rd-20201208/fido-client-to-authenticator-protocol-v2.1-rd-20201208.html).
The new features of 2.1 are currently work in progress.
### Cryptography
We're currently still in the process on making the
[ARM&reg; CryptoCell-310](https://developer.arm.com/ip-products/security-ip/cryptocell-300-family)
embedded in the
[Nordic nRF52840 chip](https://infocenter.nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fcryptocell.html)
work to get hardware-accelerated cryptography. In the meantime we implemented
the required cryptography algorithms (ECDSA, ECC secp256r1, HMAC-SHA256 and
AES256) in Rust as a placeholder. Those implementations are research-quality
code and haven't been reviewed. They don't provide constant-time guarantees and
are not designed to be resistant against side-channel attacks.
## Installation
For a more detailed guide, please refer to our
[installation guide](docs/install.md).
1. If you just cloned this repository, run the following script (**Note**: you
only need to do this once):
```shell
./setup.sh
```
1. Next step is to install Tock OS as well as the OpenSK application on your
board. Run:
```shell
# Nordic nRF52840-DK board
./deploy.py --board=nrf52840dk --opensk
# Nordic nRF52840-Dongle
./deploy.py --board=nrf52840_dongle --opensk
```
1. Finally you need to inject the cryptographic material if you enabled
batch attestation or CTAP1/U2F compatibility (which is the case by
default):
```shell
./tools/configure.py \
--certificate=crypto_data/opensk_cert.pem \
--private-key=crypto_data/opensk.key
```
1. On Linux, you may want to avoid the need for `root` privileges to interact
with the key. For that purpose we provide a udev rule file that can be
installed with the following command:
```shell
sudo cp rules.d/55-opensk.rules /etc/udev/rules.d/ &&
sudo udevadm control --reload
```
### Customization
If you build your own security key, depending on the hardware you use, there are
a few things you can personalize:
1. If you have multiple buttons, choose the buttons responsible for user
presence in `main.rs`.
1. Decide whether you want to use batch attestation. There is a boolean flag in
`ctap/mod.rs`. It is mandatory for U2F, and you can create your own
self-signed certificate. The flag is used for FIDO2 and has some privacy
implications. Please check
[WebAuthn](https://www.w3.org/TR/webauthn/#attestation) for more
information.
1. Decide whether you want to use signature counters. Currently, only global
signature counters are implemented, as they are the default option for U2F.
The flag in `ctap/mod.rs` only turns them off for FIDO2. The most privacy
preserving solution is individual or no signature counters. Again, please
check [WebAuthn](https://www.w3.org/TR/webauthn/#signature-counter) for
documentation.
1. Depending on your available flash storage, choose an appropriate maximum
number of supported resident keys and number of pages in `ctap/storage.rs`.
1. Change the default level for the credProtect extension in `ctap/mod.rs`.
When changing the default, resident credentials become undiscoverable without
user verification. This helps privacy, but can make usage less comfortable
for credentials that need less protection.
1. Increase the default minimum length for PINs in `ctap/storage.rs`.
The current minimum is 4. Values from 4 to 63 are allowed. Requiring longer
PINs can help establish trust between users and relying parties. It makes
user verification harder to break, but less convenient.
NIST recommends at least 6-digit PINs in section 5.1.9.1:
https://pages.nist.gov/800-63-3/sp800-63b.html
You can add relying parties to the list of readers of the minimum PIN length.
1. In an enterprise setting, you can adapt `DEFAULT_MIN_PIN_LENGTH_RP_IDS` and
`MAX_RP_IDS_LENGTH` for tuning the `minPinLength` extension. The former
allows some relying parties to read the minimum PIN length by default. The
latter allows storing more relying parties that may check the minimum PIN
length.
1. Increase the `MAX_CRED_BLOB_LENGTH` in `ctap/mod.rs`, if you expect blobs
bigger than the default value.
1. Implement enterprise attestation. This can be as easy as setting
ENTERPRISE_ATTESTATION_MODE in `ctap/mod.rs`. If you want to use a different
attestation type than batch attestation, you have to implement it first.
1. If a certification (additional to FIDO's) requires that all requests are
protected with user verification, set `ENFORCE_ALWAYS_UV` in
`ctap/config_mod.rs` to `true`.
### 3D printed enclosure
To protect and carry your key, we partnered with a professional designer and we
are providing a custom enclosure that can be printed on both professional 3D
printers and hobbyist models.
All the required files can be downloaded from
[Thingiverse](https://www.thingiverse.com/thing:4132768) including the STEP
file, allowing you to easily make the modifications you need to further
customize it.
## Development and testing
### Printing panic messages to the console
By default, libtock-rs blinks some LEDs when the userspace application panicks.
This is not always convenient as the panic message is lost. In order to enable
a custom panic handler that first writes the panic message via Tock's console
driver, before faulting the app, you can use the `--panic-console` flag of the
`deploy.py` script.
```shell
# Example on Nordic nRF52840-DK board
./deploy.py --board=nrf52840dk --opensk --panic-console
```
### Debugging memory allocations
You may want to track memory allocations to understand the heap usage of
OpenSK. This can be useful if you plan to port it to a board with fewer
available RAM for example. To do so, you can enable the `--debug-allocations`
flag of the `deploy.py` script. This enables a custom (userspace) allocator
that prints a message to the console for each allocation and deallocation
operation.
The additional output looks like the following.
```text
# Allocation of 256 byte(s), aligned on 1 byte(s). The allocated address is
# 0x2002401c. After this operation, 2 pointers have been allocated, totalling
# 384 bytes (the total heap usage may be larger, due to alignment and
# fragmentation of allocations within the heap).
alloc[256, 1] = 0x2002401c (2 ptrs, 384 bytes)
# Deallocation of 64 byte(s), aligned on 1 byte(s), from address 0x2002410c.
# After this operation, 1 pointers are allocated, totalling 512 bytes.
dealloc[64, 1] = 0x2002410c (1 ptrs, 512 bytes)
```
A tool is provided to analyze such reports, in `tools/heapviz`. This tool
parses the console output, identifies the lines corresponding to (de)allocation
operations, and first computes some statistics:
* Address range used by the heap over this run of the program,
* Peak heap usage (how many useful bytes are allocated),
* Peak heap consumption (how many bytes are used by the heap, including
unavailable bytes between allocated blocks, due to alignment constraints and
memory fragmentation),
* Fragmentation overhead (difference between heap consumption and usage).
Then, the `heapviz` tool displays an animated "movie" of the allocated bytes in
heap memory. Each frame in this "movie" shows bytes that are currently
allocated, that were allocated but are now freed, and that have never been
allocated. A new frame is generated for each (de)allocation operation. This tool
uses the `ncurses` library, that you may have to install beforehand.
You can control the tool with the following parameters:
* `--logfile` (required) to provide the file which contains the console output
to parse,
* `--fps` (optional) to customize the number of frames per second in the movie
animation.
```shell
cargo run --manifest-path tools/heapviz/Cargo.toml -- --logfile console.log --fps 50
```
## Contributing
See [Contributing.md](docs/contributing.md).