ECDSA signatures and public keys in CTAP (#358)

* ECDSA signatures and public keys in CTAP

* adds one constant usage

* documents pub functions in ECDSA

* typo: involved

* extends wrong length test
This commit is contained in:
kaczmarczyck
2021-08-04 13:39:49 +02:00
committed by GitHub
parent 7bb4960730
commit b7a3e06cf4
4 changed files with 215 additions and 43 deletions

View File

@@ -120,7 +120,6 @@ impl PointP256 {
} }
// Computes n1*G + n2*self // Computes n1*G + n2*self
#[cfg(feature = "std")]
pub fn points_mul(&self, n1: &ExponentP256, n2: &ExponentP256) -> PointP256 { pub fn points_mul(&self, n1: &ExponentP256, n2: &ExponentP256) -> PointP256 {
let p = self.to_affine(); let p = self.to_affine();
let p1 = PointProjective::scalar_base_mul(n1); let p1 = PointProjective::scalar_base_mul(n1);

View File

@@ -21,11 +21,9 @@ use super::rng256::Rng256;
use super::{Hash256, HashBlockSize64Bytes}; use super::{Hash256, HashBlockSize64Bytes};
use alloc::vec; use alloc::vec;
use alloc::vec::Vec; use alloc::vec::Vec;
#[cfg(test)]
use arrayref::array_mut_ref;
#[cfg(feature = "std")] #[cfg(feature = "std")]
use arrayref::array_ref; use arrayref::array_mut_ref;
use arrayref::mut_array_refs; use arrayref::{array_ref, mut_array_refs};
use core::marker::PhantomData; use core::marker::PhantomData;
pub const NBYTES: usize = int256::NBYTES; pub const NBYTES: usize = int256::NBYTES;
@@ -150,6 +148,7 @@ impl SecKey {
} }
} }
/// Creates a private key from the exponent's bytes, or None if checks fail.
pub fn from_bytes(bytes: &[u8; 32]) -> Option<SecKey> { pub fn from_bytes(bytes: &[u8; 32]) -> Option<SecKey> {
let k = NonZeroExponentP256::from_int_checked(Int256::from_bin(bytes)); let k = NonZeroExponentP256::from_int_checked(Int256::from_bin(bytes));
// The branching here is fine because all this reveals is whether the key was invalid. // The branching here is fine because all this reveals is whether the key was invalid.
@@ -160,12 +159,16 @@ impl SecKey {
Some(SecKey { k }) Some(SecKey { k })
} }
/// Writes a private key's exponent's bytes to the passed in array.
pub fn to_bytes(&self, bytes: &mut [u8; 32]) { pub fn to_bytes(&self, bytes: &mut [u8; 32]) {
self.k.to_int().to_bin(bytes); self.k.to_int().to_bin(bytes);
} }
} }
impl Signature { impl Signature {
pub const BYTES_LENGTH: usize = 2 * int256::NBYTES;
/// Converts a signature to its ASN1 DER representation.
pub fn to_asn1_der(&self) -> Vec<u8> { pub fn to_asn1_der(&self) -> Vec<u8> {
const DER_INTEGER_TYPE: u8 = 0x02; const DER_INTEGER_TYPE: u8 = 0x02;
const DER_DEF_LENGTH_SEQUENCE: u8 = 0x30; const DER_DEF_LENGTH_SEQUENCE: u8 = 0x30;
@@ -193,15 +196,12 @@ impl Signature {
encoding encoding
} }
#[cfg(feature = "std")] /// Creates a signature from the exponents' bytes, or None if checks fail.
pub fn from_bytes(bytes: &[u8]) -> Option<Signature> { pub fn from_bytes(bytes: &[u8; Signature::BYTES_LENGTH]) -> Option<Signature> {
if bytes.len() != 64 { let r_bytes_ref = array_ref![bytes, 0, int256::NBYTES];
None let r = NonZeroExponentP256::from_int_checked(Int256::from_bin(r_bytes_ref));
} else { let s_bytes_ref = array_ref![bytes, int256::NBYTES, int256::NBYTES];
let r = let s = NonZeroExponentP256::from_int_checked(Int256::from_bin(s_bytes_ref));
NonZeroExponentP256::from_int_checked(Int256::from_bin(array_ref![bytes, 0, 32]));
let s =
NonZeroExponentP256::from_int_checked(Int256::from_bin(array_ref![bytes, 32, 32]));
if bool::from(r.is_none()) || bool::from(s.is_none()) { if bool::from(r.is_none()) || bool::from(s.is_none()) {
return None; return None;
} }
@@ -209,12 +209,15 @@ impl Signature {
let s = s.unwrap(); let s = s.unwrap();
Some(Signature { r, s }) Some(Signature { r, s })
} }
}
#[cfg(test)] #[cfg(feature = "std")]
fn to_bytes(&self, bytes: &mut [u8; 64]) { pub fn to_bytes(&self, bytes: &mut [u8; Signature::BYTES_LENGTH]) {
self.r.to_int().to_bin(array_mut_ref![bytes, 0, 32]); self.r
self.s.to_int().to_bin(array_mut_ref![bytes, 32, 32]); .to_int()
.to_bin(array_mut_ref![bytes, 0, int256::NBYTES]);
self.s
.to_int()
.to_bin(array_mut_ref![bytes, int256::NBYTES, int256::NBYTES]);
} }
} }
@@ -222,6 +225,12 @@ impl PubKey {
#[cfg(feature = "with_ctap1")] #[cfg(feature = "with_ctap1")]
const UNCOMPRESSED_LENGTH: usize = 1 + 2 * int256::NBYTES; const UNCOMPRESSED_LENGTH: usize = 1 + 2 * int256::NBYTES;
/// Creates a new PubKey from its coordinates on the elliptic curve.
pub fn from_coordinates(x: &[u8; NBYTES], y: &[u8; NBYTES]) -> Option<PubKey> {
PointP256::new_checked_vartime(Int256::from_bin(x), Int256::from_bin(y))
.map(|p| PubKey { p })
}
#[cfg(feature = "std")] #[cfg(feature = "std")]
pub fn from_bytes_uncompressed(bytes: &[u8]) -> Option<PubKey> { pub fn from_bytes_uncompressed(bytes: &[u8]) -> Option<PubKey> {
PointP256::from_bytes_uncompressed_vartime(bytes).map(|p| PubKey { p }) PointP256::from_bytes_uncompressed_vartime(bytes).map(|p| PubKey { p })
@@ -252,12 +261,12 @@ impl PubKey {
self.p.gety().to_int().to_bin(y); self.p.gety().to_int().to_bin(y);
} }
#[cfg(feature = "std")] /// Verifies if the data's hash matches its signature.
pub fn verify_vartime<H>(&self, msg: &[u8], sign: &Signature) -> bool ///
where /// This function is not a constant time implementation, and does not resist side channel
H: Hash256, /// attacks. Only use if all data involved is public knowledge.
{ pub fn verify_hash_vartime(&self, hash: &[u8; NBYTES], sign: &Signature) -> bool {
let m = ExponentP256::modn(Int256::from_bin(&H::hash(msg))); let m = ExponentP256::modn(Int256::from_bin(hash));
let v = sign.s.inv(); let v = sign.s.inv();
let u = &m * v.as_exponent(); let u = &m * v.as_exponent();
@@ -267,6 +276,14 @@ impl PubKey {
ExponentP256::modn(u.to_int()) == *sign.r.as_exponent() ExponentP256::modn(u.to_int()) == *sign.r.as_exponent()
} }
#[cfg(feature = "std")]
pub fn verify_vartime<H>(&self, msg: &[u8], sign: &Signature) -> bool
where
H: Hash256,
{
self.verify_hash_vartime(&H::hash(msg), sign)
}
} }
struct Rfc6979<H> struct Rfc6979<H>
@@ -442,6 +459,21 @@ mod test {
test_rfc6979(msg, k, r, s); test_rfc6979(msg, k, r, s);
} }
/** Tests that sign and verify hashes are consistent **/
// Test that signed message hashes are correctly verified.
#[test]
fn test_sign_rfc6979_verify_hash_random() {
let mut rng = ThreadRng256 {};
for _ in 0..ITERATIONS {
let msg = rng.gen_uniform_u8x32();
let sk = SecKey::gensk(&mut rng);
let pk = sk.genpk();
let sign = sk.sign_rfc6979::<Sha256>(&msg);
assert!(pk.verify_hash_vartime(&Sha256::hash(&msg), &sign));
}
}
/** Tests that sign and verify are consistent **/ /** Tests that sign and verify are consistent **/
// Test that signed messages are correctly verified. // Test that signed messages are correctly verified.
#[test] #[test]
@@ -537,7 +569,8 @@ mod test {
let sig_bytes = sig.as_ref(); let sig_bytes = sig.as_ref();
let pk = PubKey::from_bytes_uncompressed(public_key_bytes).unwrap(); let pk = PubKey::from_bytes_uncompressed(public_key_bytes).unwrap();
let sign = Signature::from_bytes(sig_bytes).unwrap(); let sign =
Signature::from_bytes(array_ref![sig_bytes, 0, Signature::BYTES_LENGTH]).unwrap();
assert!(pk.verify_vartime::<Sha256>(&msg_bytes, &sign)); assert!(pk.verify_vartime::<Sha256>(&msg_bytes, &sign));
} }
} }

View File

@@ -17,6 +17,7 @@ use alloc::string::String;
use alloc::vec::Vec; use alloc::vec::Vec;
use arrayref::array_ref; use arrayref::array_ref;
use core::convert::TryFrom; use core::convert::TryFrom;
use core::fmt;
use crypto::{ecdh, ecdsa}; use crypto::{ecdh, ecdsa};
#[cfg(test)] #[cfg(test)]
use enum_iterator::IntoEnumIterator; use enum_iterator::IntoEnumIterator;
@@ -722,12 +723,18 @@ impl TryFrom<cbor::Value> for CoseKey {
} = extract_map(cbor_value)?; } = extract_map(cbor_value)?;
} }
let algorithm = extract_integer(ok_or_missing(algorithm)?)?;
let nbytes = match algorithm {
CoseKey::ECDH_ALGORITHM => ecdh::NBYTES,
ES256_ALGORITHM => ecdsa::NBYTES,
_ => return Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM),
};
let x_bytes = extract_byte_string(ok_or_missing(x_bytes)?)?; let x_bytes = extract_byte_string(ok_or_missing(x_bytes)?)?;
if x_bytes.len() != ecdh::NBYTES { if x_bytes.len() != nbytes {
return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER); return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER);
} }
let y_bytes = extract_byte_string(ok_or_missing(y_bytes)?)?; let y_bytes = extract_byte_string(ok_or_missing(y_bytes)?)?;
if y_bytes.len() != ecdh::NBYTES { if y_bytes.len() != nbytes {
return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER); return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER);
} }
let curve = extract_integer(ok_or_missing(curve)?)?; let curve = extract_integer(ok_or_missing(curve)?)?;
@@ -738,10 +745,6 @@ impl TryFrom<cbor::Value> for CoseKey {
if key_type != CoseKey::EC2_KEY_TYPE { if key_type != CoseKey::EC2_KEY_TYPE {
return Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM); return Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM);
} }
let algorithm = extract_integer(ok_or_missing(algorithm)?)?;
if algorithm != CoseKey::ECDH_ALGORITHM && algorithm != ES256_ALGORITHM {
return Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM);
}
Ok(CoseKey { Ok(CoseKey {
x_bytes: *array_ref![x_bytes.as_slice(), 0, ecdh::NBYTES], x_bytes: *array_ref![x_bytes.as_slice(), 0, ecdh::NBYTES],
@@ -817,6 +820,87 @@ impl TryFrom<CoseKey> for ecdh::PubKey {
} }
} }
impl TryFrom<CoseKey> for ecdsa::PubKey {
type Error = Ctap2StatusCode;
fn try_from(cose_key: CoseKey) -> Result<Self, Ctap2StatusCode> {
let CoseKey {
x_bytes,
y_bytes,
algorithm,
} = cose_key;
if algorithm != ES256_ALGORITHM {
return Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM);
}
ecdsa::PubKey::from_coordinates(&x_bytes, &y_bytes)
.ok_or(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)
}
}
/// Data structure for receiving a signature.
///
/// See https://datatracker.ietf.org/doc/html/rfc8152#appendix-C.1.1 for reference.
///
/// TODO derive Debug and PartialEq with compiler version 1.47
#[derive(Clone)]
pub struct CoseSignature {
pub algorithm: SignatureAlgorithm,
pub bytes: [u8; ecdsa::Signature::BYTES_LENGTH],
}
impl fmt::Debug for CoseSignature {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter
.debug_struct("CoseSignature")
.field("algorithm", &self.algorithm)
.field("bytes", &self.bytes.to_vec())
.finish()
}
}
impl PartialEq for CoseSignature {
fn eq(&self, other: &CoseSignature) -> bool {
self.algorithm == other.algorithm && self.bytes[..] == other.bytes[..]
}
}
impl TryFrom<cbor::Value> for CoseSignature {
type Error = Ctap2StatusCode;
fn try_from(cbor_value: cbor::Value) -> Result<Self, Ctap2StatusCode> {
destructure_cbor_map! {
let {
"alg" => algorithm,
"signature" => bytes,
} = extract_map(cbor_value)?;
}
let algorithm = SignatureAlgorithm::try_from(ok_or_missing(algorithm)?)?;
let bytes = extract_byte_string(ok_or_missing(bytes)?)?;
if bytes.len() != ecdsa::Signature::BYTES_LENGTH {
return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER);
}
Ok(CoseSignature {
algorithm,
bytes: *array_ref![bytes.as_slice(), 0, ecdsa::Signature::BYTES_LENGTH],
})
}
}
impl TryFrom<CoseSignature> for ecdsa::Signature {
type Error = Ctap2StatusCode;
fn try_from(cose_signature: CoseSignature) -> Result<Self, Ctap2StatusCode> {
match cose_signature.algorithm {
SignatureAlgorithm::ES256 => ecdsa::Signature::from_bytes(&cose_signature.bytes)
.ok_or(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER),
SignatureAlgorithm::Unknown => Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)] #[derive(Clone, Copy, Debug, PartialEq)]
pub enum PinUvAuthProtocol { pub enum PinUvAuthProtocol {
V1 = 1, V1 = 1,
@@ -1147,6 +1231,7 @@ mod test {
cbor_text, cbor_unsigned, cbor_text, cbor_unsigned,
}; };
use crypto::rng256::{Rng256, ThreadRng256}; use crypto::rng256::{Rng256, ThreadRng256};
use crypto::sha256::Sha256;
#[test] #[test]
fn test_extract_unsigned() { fn test_extract_unsigned() {
@@ -1814,6 +1899,64 @@ mod test {
assert_eq!(cose_key.algorithm, ES256_ALGORITHM); assert_eq!(cose_key.algorithm, ES256_ALGORITHM);
} }
#[test]
fn test_from_into_cose_signature() {
let mut rng = ThreadRng256 {};
let sk = crypto::ecdsa::SecKey::gensk(&mut rng);
let dummy_signature = sk.sign_rfc6979::<Sha256>(&[]);
let mut bytes = [0; ecdsa::Signature::BYTES_LENGTH];
dummy_signature.to_bytes(&mut bytes);
let cbor_value = cbor_map! {
"alg" => ES256_ALGORITHM,
"signature" => bytes,
};
let cose_signature = CoseSignature::try_from(cbor_value).unwrap();
let created_signature = crypto::ecdsa::Signature::try_from(cose_signature).unwrap();
let mut created_bytes = [0; ecdsa::Signature::BYTES_LENGTH];
created_signature.to_bytes(&mut created_bytes);
assert_eq!(bytes[..], created_bytes[..]);
}
#[test]
fn test_cose_signature_wrong_algorithm() {
let mut rng = ThreadRng256 {};
let sk = crypto::ecdsa::SecKey::gensk(&mut rng);
let dummy_signature = sk.sign_rfc6979::<Sha256>(&[]);
let mut bytes = [0; ecdsa::Signature::BYTES_LENGTH];
dummy_signature.to_bytes(&mut bytes);
let cbor_value = cbor_map! {
"alg" => -1, // unused algorithm
"signature" => bytes,
};
let cose_signature = CoseSignature::try_from(cbor_value).unwrap();
let created_signature = crypto::ecdsa::Signature::try_from(cose_signature);
// Can not compare directly, since ecdsa::Signature does not implement Debug.
assert_eq!(
created_signature.err(),
Some(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM)
);
}
#[test]
fn test_cose_signature_wrong_signature_length() {
let cbor_value = cbor_map! {
"alg" => ES256_ALGORITHM,
"signature" => [0; ecdsa::Signature::BYTES_LENGTH - 1],
};
assert_eq!(
CoseSignature::try_from(cbor_value),
Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)
);
let cbor_value = cbor_map! {
"alg" => ES256_ALGORITHM,
"signature" => [0; ecdsa::Signature::BYTES_LENGTH + 1],
};
assert_eq!(
CoseSignature::try_from(cbor_value),
Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)
);
}
#[test] #[test]
fn test_from_pin_uv_auth_protocol() { fn test_from_pin_uv_auth_protocol() {
let cbor_protocol: cbor::Value = cbor_int!(0x01); let cbor_protocol: cbor::Value = cbor_int!(0x01);

View File

@@ -741,14 +741,11 @@ where
.attestation_certificate()? .attestation_certificate()?
.ok_or(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?; .ok_or(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?;
( (
attestation_key.sign_rfc6979::<crypto::sha256::Sha256>(&signature_data), attestation_key.sign_rfc6979::<Sha256>(&signature_data),
Some(vec![attestation_certificate]), Some(vec![attestation_certificate]),
) )
} else { } else {
( (sk.sign_rfc6979::<Sha256>(&signature_data), None)
sk.sign_rfc6979::<crypto::sha256::Sha256>(&signature_data),
None,
)
}; };
let attestation_statement = PackedAttestationStatement { let attestation_statement = PackedAttestationStatement {
alg: SignatureAlgorithm::ES256 as i64, alg: SignatureAlgorithm::ES256 as i64,
@@ -829,7 +826,7 @@ where
signature_data.extend(client_data_hash); signature_data.extend(client_data_hash);
let signature = credential let signature = credential
.private_key .private_key
.sign_rfc6979::<crypto::sha256::Sha256>(&signature_data); .sign_rfc6979::<Sha256>(&signature_data);
let cred_desc = PublicKeyCredentialDescriptor { let cred_desc = PublicKeyCredentialDescriptor {
key_type: PublicKeyCredentialType::PublicKey, key_type: PublicKeyCredentialType::PublicKey,