Files
OpenSK/src/embedded_flash/buffer.rs
Julien Cretin e52a671810 Support storing in RAM instead of flash
This permits to run without persistent storage. The benefit is that the board
doesn't implement a the syscall API in Tock. The disadvantage is that rebooting
the key will reset the storage.
2020-03-04 16:24:06 +01:00

457 lines
16 KiB
Rust

// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::{Index, Storage, StorageError, StorageResult};
use alloc::boxed::Box;
pub struct BufferStorage {
storage: Box<[u8]>,
options: BufferOptions,
word_writes: Box<[usize]>,
page_erases: Box<[usize]>,
snapshot: Snapshot,
}
#[derive(Copy, Clone, Debug)]
pub struct BufferOptions {
/// Size of a word in bytes.
pub word_size: usize,
/// Size of a page in bytes.
pub page_size: usize,
/// How many times a word can be written between page erasures
pub max_word_writes: usize,
/// How many times a page can be erased.
pub max_page_erases: usize,
/// Bits cannot be written from 0 to 1.
pub strict_write: bool,
}
impl BufferStorage {
/// Creates a fake embedded flash using a buffer.
///
/// This implementation checks that no words are written more than `max_word_writes` between
/// page erasures and than no pages are erased more than `max_page_erases`. If `strict_write` is
/// true, it also checks that no bits are written from 0 to 1. It also permits to take snapshots
/// of the storage during write and erase operations (although words would still be written or
/// erased completely).
///
/// # Panics
///
/// The following preconditions must hold:
/// - `options.word_size` must be a power of two.
/// - `options.page_size` must be a power of two.
/// - `options.page_size` must be word-aligned.
/// - `storage.len()` must be page-aligned.
pub fn new(storage: Box<[u8]>, options: BufferOptions) -> BufferStorage {
assert!(options.word_size.is_power_of_two());
assert!(options.page_size.is_power_of_two());
let num_words = storage.len() / options.word_size;
let num_pages = storage.len() / options.page_size;
let buffer = BufferStorage {
storage,
options,
word_writes: vec![0; num_words].into_boxed_slice(),
page_erases: vec![0; num_pages].into_boxed_slice(),
snapshot: Snapshot::Ready,
};
assert!(buffer.is_word_aligned(buffer.options.page_size));
assert!(buffer.is_page_aligned(buffer.storage.len()));
buffer
}
/// Takes a snapshot of the storage after a given amount of word operations.
///
/// Each time a word is written or erased, the delay is decremented if positive. Otherwise, a
/// snapshot is taken before the operation is executed.
///
/// # Panics
///
/// Panics if a snapshot has been armed and not examined.
pub fn arm_snapshot(&mut self, delay: usize) {
self.snapshot.arm(delay);
}
/// Unarms and returns the snapshot or the delay remaining.
///
/// # Panics
///
/// Panics if a snapshot was not armed.
pub fn get_snapshot(&mut self) -> Result<Box<[u8]>, usize> {
self.snapshot.get()
}
/// Takes a snapshot of the storage.
pub fn take_snapshot(&self) -> Box<[u8]> {
self.storage.clone()
}
/// Returns the storage.
pub fn get_storage(self) -> Box<[u8]> {
self.storage
}
fn is_word_aligned(&self, x: usize) -> bool {
x & (self.options.word_size - 1) == 0
}
fn is_page_aligned(&self, x: usize) -> bool {
x & (self.options.page_size - 1) == 0
}
/// Writes a slice to the storage.
///
/// The slice `value` is written to `index`. The `erase` boolean specifies whether this is an
/// erase operation or a write operation which matters for the checks and updating the shadow
/// storage. This also takes a snapshot of the storage if a snapshot was armed and the delay has
/// elapsed.
///
/// The following preconditions should hold:
/// - `index` is word-aligned.
/// - `value.len()` is word-aligned.
///
/// The following checks are performed:
/// - The region of length `value.len()` starting at `index` fits in a storage page.
/// - A word is not written more than `max_word_writes`.
/// - A page is not erased more than `max_page_erases`.
/// - The new word only switches 1s to 0s (only if `strict_write` is set).
fn update_storage(&mut self, index: Index, value: &[u8], erase: bool) -> StorageResult<()> {
debug_assert!(self.is_word_aligned(index.byte) && self.is_word_aligned(value.len()));
let dst = index.range(value.len(), self)?.step_by(self.word_size());
let src = value.chunks(self.word_size());
// Check and update page shadow.
if erase {
let page = index.page;
assert!(self.page_erases[page] < self.max_page_erases());
self.page_erases[page] += 1;
}
for (byte, val) in dst.zip(src) {
let range = byte..byte + self.word_size();
// The driver doesn't write identical words.
if &self.storage[range.clone()] == val {
continue;
}
// Check and update word shadow.
let word = byte / self.word_size();
if erase {
self.word_writes[word] = 0;
} else {
assert!(self.word_writes[word] < self.max_word_writes());
self.word_writes[word] += 1;
}
// Check strict write.
if !erase && self.options.strict_write {
for (byte, &val) in range.clone().zip(val) {
assert_eq!(self.storage[byte] & val, val);
}
}
// Take snapshot if armed and delay expired.
self.snapshot.take(&self.storage);
// Write storage
self.storage[range].copy_from_slice(val);
}
Ok(())
}
}
impl Storage for BufferStorage {
fn word_size(&self) -> usize {
self.options.word_size
}
fn page_size(&self) -> usize {
self.options.page_size
}
fn num_pages(&self) -> usize {
self.storage.len() / self.options.page_size
}
fn max_word_writes(&self) -> usize {
self.options.max_word_writes
}
fn max_page_erases(&self) -> usize {
self.options.max_page_erases
}
fn read_slice(&self, index: Index, length: usize) -> StorageResult<&[u8]> {
Ok(&self.storage[index.range(length, self)?])
}
fn write_slice(&mut self, index: Index, value: &[u8]) -> StorageResult<()> {
if !self.is_word_aligned(index.byte) || !self.is_word_aligned(value.len()) {
return Err(StorageError::NotAligned);
}
self.update_storage(index, value, false)
}
fn erase_page(&mut self, page: usize) -> StorageResult<()> {
let index = Index { page, byte: 0 };
let value = vec![0xff; self.page_size()];
self.update_storage(index, &value, true)
}
}
// Controls when a snapshot of the storage is taken.
//
// This can be used to simulate power-offs while the device is writing to the storage or erasing a
// page in the storage.
enum Snapshot {
// Mutable word operations have normal behavior.
Ready,
// If the delay is positive, mutable word operations decrement it. If the count is zero, mutable
// word operations take a snapshot of the storage.
Armed { delay: usize },
// Mutable word operations have normal behavior.
Taken { storage: Box<[u8]> },
}
impl Snapshot {
fn arm(&mut self, delay: usize) {
match self {
Snapshot::Ready => *self = Snapshot::Armed { delay },
_ => panic!(),
}
}
fn get(&mut self) -> Result<Box<[u8]>, usize> {
let mut snapshot = Snapshot::Ready;
core::mem::swap(self, &mut snapshot);
match snapshot {
Snapshot::Armed { delay } => Err(delay),
Snapshot::Taken { storage } => Ok(storage),
_ => panic!(),
}
}
fn take(&mut self, storage: &[u8]) {
if let Snapshot::Armed { delay } = self {
if *delay == 0 {
let storage = storage.to_vec().into_boxed_slice();
*self = Snapshot::Taken { storage };
} else {
*delay -= 1;
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
const NUM_PAGES: usize = 2;
const OPTIONS: BufferOptions = BufferOptions {
word_size: 4,
page_size: 16,
max_word_writes: 2,
max_page_erases: 3,
strict_write: true,
};
// Those words are decreasing bit patterns. Bits are only changed from 1 to 0 and at last one
// bit is changed.
const BLANK_WORD: &[u8] = &[0xff, 0xff, 0xff, 0xff];
const FIRST_WORD: &[u8] = &[0xee, 0xdd, 0xbb, 0x77];
const SECOND_WORD: &[u8] = &[0xca, 0xc9, 0xa9, 0x65];
const THIRD_WORD: &[u8] = &[0x88, 0x88, 0x88, 0x44];
fn new_storage() -> Box<[u8]> {
vec![0xff; NUM_PAGES * OPTIONS.page_size].into_boxed_slice()
}
#[test]
fn words_are_decreasing() {
fn assert_is_decreasing(prev: &[u8], next: &[u8]) {
for (&prev, &next) in prev.iter().zip(next.iter()) {
assert_eq!(prev & next, next);
assert!(prev != next);
}
}
assert_is_decreasing(BLANK_WORD, FIRST_WORD);
assert_is_decreasing(FIRST_WORD, SECOND_WORD);
assert_is_decreasing(SECOND_WORD, THIRD_WORD);
}
#[test]
fn options_ok() {
let buffer = BufferStorage::new(new_storage(), OPTIONS);
assert_eq!(buffer.word_size(), OPTIONS.word_size);
assert_eq!(buffer.page_size(), OPTIONS.page_size);
assert_eq!(buffer.num_pages(), NUM_PAGES);
assert_eq!(buffer.max_word_writes(), OPTIONS.max_word_writes);
assert_eq!(buffer.max_page_erases(), OPTIONS.max_page_erases);
}
#[test]
fn read_write_ok() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 0 };
let next_index = Index { page: 0, byte: 4 };
assert_eq!(buffer.read_slice(index, 4).unwrap(), BLANK_WORD);
buffer.write_slice(index, FIRST_WORD).unwrap();
assert_eq!(buffer.read_slice(index, 4).unwrap(), FIRST_WORD);
assert_eq!(buffer.read_slice(next_index, 4).unwrap(), BLANK_WORD);
}
#[test]
fn erase_ok() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 0 };
let other_index = Index { page: 1, byte: 0 };
buffer.write_slice(index, FIRST_WORD).unwrap();
buffer.write_slice(other_index, FIRST_WORD).unwrap();
assert_eq!(buffer.read_slice(index, 4).unwrap(), FIRST_WORD);
assert_eq!(buffer.read_slice(other_index, 4).unwrap(), FIRST_WORD);
buffer.erase_page(0).unwrap();
assert_eq!(buffer.read_slice(index, 4).unwrap(), BLANK_WORD);
assert_eq!(buffer.read_slice(other_index, 4).unwrap(), FIRST_WORD);
}
#[test]
fn invalid_range() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 12 };
let half_index = Index { page: 0, byte: 14 };
let over_index = Index { page: 0, byte: 16 };
let bad_page = Index { page: 2, byte: 0 };
// Reading a word in the storage is ok.
assert!(buffer.read_slice(index, 4).is_ok());
// Reading a half-word in the storage is ok.
assert!(buffer.read_slice(half_index, 2).is_ok());
// Reading even a single byte outside a page is not ok.
assert!(buffer.read_slice(over_index, 1).is_err());
// But reading an empty slice just after a page is ok.
assert!(buffer.read_slice(over_index, 0).is_ok());
// Reading even an empty slice outside the storage is not ok.
assert!(buffer.read_slice(bad_page, 0).is_err());
// Writing a word in the storage is ok.
assert!(buffer.write_slice(index, FIRST_WORD).is_ok());
// Writing an unaligned word is not ok.
assert!(buffer.write_slice(half_index, FIRST_WORD).is_err());
// Writing a word outside a page is not ok.
assert!(buffer.write_slice(over_index, FIRST_WORD).is_err());
// But writing an empty slice just after a page is ok.
assert!(buffer.write_slice(over_index, &[]).is_ok());
// Writing even an empty slice outside the storage is not ok.
assert!(buffer.write_slice(bad_page, &[]).is_err());
// Only pages in the storage can be erased.
assert!(buffer.erase_page(0).is_ok());
assert!(buffer.erase_page(2).is_err());
}
#[test]
fn write_twice_ok() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 4 };
assert!(buffer.write_slice(index, FIRST_WORD).is_ok());
assert!(buffer.write_slice(index, SECOND_WORD).is_ok());
}
#[test]
fn write_twice_and_once_ok() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 0 };
let next_index = Index { page: 0, byte: 4 };
assert!(buffer.write_slice(index, FIRST_WORD).is_ok());
assert!(buffer.write_slice(index, SECOND_WORD).is_ok());
assert!(buffer.write_slice(next_index, THIRD_WORD).is_ok());
}
#[test]
#[should_panic]
fn write_three_times_panics() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 4 };
assert!(buffer.write_slice(index, FIRST_WORD).is_ok());
assert!(buffer.write_slice(index, SECOND_WORD).is_ok());
let _ = buffer.write_slice(index, THIRD_WORD);
}
#[test]
fn write_twice_then_once_ok() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 0 };
assert!(buffer.write_slice(index, FIRST_WORD).is_ok());
assert!(buffer.write_slice(index, SECOND_WORD).is_ok());
assert!(buffer.erase_page(0).is_ok());
assert!(buffer.write_slice(index, FIRST_WORD).is_ok());
}
#[test]
fn erase_three_times_ok() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
assert!(buffer.erase_page(0).is_ok());
assert!(buffer.erase_page(0).is_ok());
assert!(buffer.erase_page(0).is_ok());
}
#[test]
fn erase_three_times_and_once_ok() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
assert!(buffer.erase_page(0).is_ok());
assert!(buffer.erase_page(0).is_ok());
assert!(buffer.erase_page(0).is_ok());
assert!(buffer.erase_page(1).is_ok());
}
#[test]
#[should_panic]
fn erase_four_times_panics() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
assert!(buffer.erase_page(0).is_ok());
assert!(buffer.erase_page(0).is_ok());
assert!(buffer.erase_page(0).is_ok());
let _ = buffer.erase_page(0).is_ok();
}
#[test]
#[should_panic]
fn switch_zero_to_one_panics() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 0 };
assert!(buffer.write_slice(index, SECOND_WORD).is_ok());
let _ = buffer.write_slice(index, FIRST_WORD);
}
#[test]
fn get_storage_ok() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 4 };
buffer.write_slice(index, FIRST_WORD).unwrap();
let storage = buffer.get_storage();
assert_eq!(&storage[..4], BLANK_WORD);
assert_eq!(&storage[4..8], FIRST_WORD);
}
#[test]
fn snapshot_ok() {
let mut buffer = BufferStorage::new(new_storage(), OPTIONS);
let index = Index { page: 0, byte: 0 };
let value = [FIRST_WORD, SECOND_WORD].concat();
buffer.arm_snapshot(1);
buffer.write_slice(index, &value).unwrap();
let storage = buffer.get_snapshot().unwrap();
assert_eq!(&storage[..8], &[FIRST_WORD, BLANK_WORD].concat()[..]);
let storage = buffer.take_snapshot();
assert_eq!(&storage[..8], &value[..]);
}
}