Files
OpenSK/src/ctap/storage.rs
2020-11-27 16:53:12 +01:00

1170 lines
42 KiB
Rust

// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#[cfg(feature = "with_ctap2_1")]
use crate::ctap::data_formats::{extract_array, extract_text_string};
use crate::ctap::data_formats::{CredentialProtectionPolicy, PublicKeyCredentialSource};
use crate::ctap::key_material;
use crate::ctap::pin_protocol_v1::PIN_AUTH_LENGTH;
use crate::ctap::status_code::Ctap2StatusCode;
use crate::embedded_flash::{self, StoreConfig, StoreEntry, StoreError};
use alloc::string::String;
#[cfg(any(test, feature = "ram_storage", feature = "with_ctap2_1"))]
use alloc::vec;
use alloc::vec::Vec;
use arrayref::array_ref;
#[cfg(feature = "with_ctap2_1")]
use cbor::cbor_array_vec;
use core::convert::TryInto;
use crypto::rng256::Rng256;
#[cfg(any(test, feature = "ram_storage"))]
type Storage = embedded_flash::BufferStorage;
#[cfg(not(any(test, feature = "ram_storage")))]
type Storage = embedded_flash::SyscallStorage;
// Those constants may be modified before compilation to tune the behavior of the key.
//
// The number of pages should be at least 2 and at most what the flash can hold. There should be no
// reason to put a small number here, except that the latency of flash operations depends on the
// number of pages. This will improve in the future. Currently, using 20 pages gives 65ms per
// operation. The rule of thumb is 3.5ms per additional page.
//
// Limiting the number of residential keys permits to ensure a minimum number of counter increments.
// Let:
// - P the number of pages (NUM_PAGES)
// - K the maximum number of residential keys (MAX_SUPPORTED_RESIDENTIAL_KEYS)
// - S the maximum size of a residential key (about 500)
// - C the number of erase cycles (10000)
// - I the minimum number of counter increments
//
// We have: I = ((P - 1) * 4092 - K * S) / 12 * C
//
// With P=20 and K=150, we have I > 2M which is enough for 500 increments per day for 10 years.
#[cfg(feature = "ram_storage")]
const NUM_PAGES: usize = 2;
#[cfg(not(feature = "ram_storage"))]
const NUM_PAGES: usize = 20;
const MAX_SUPPORTED_RESIDENTIAL_KEYS: usize = 150;
// List of tags. They should all be unique. And there should be less than NUM_TAGS.
const TAG_CREDENTIAL: usize = 0;
const GLOBAL_SIGNATURE_COUNTER: usize = 1;
const MASTER_KEYS: usize = 2;
const PIN_HASH: usize = 3;
const PIN_RETRIES: usize = 4;
const ATTESTATION_PRIVATE_KEY: usize = 5;
const ATTESTATION_CERTIFICATE: usize = 6;
const AAGUID: usize = 7;
#[cfg(feature = "with_ctap2_1")]
const MIN_PIN_LENGTH: usize = 8;
#[cfg(feature = "with_ctap2_1")]
const MIN_PIN_LENGTH_RP_IDS: usize = 9;
// Different NUM_TAGS depending on the CTAP version make the storage incompatible,
// so we use the maximum.
const NUM_TAGS: usize = 10;
const MAX_PIN_RETRIES: u8 = 8;
#[cfg(feature = "with_ctap2_1")]
const DEFAULT_MIN_PIN_LENGTH: u8 = 4;
// TODO(kaczmarczyck) use this for the minPinLength extension
// https://github.com/google/OpenSK/issues/129
#[cfg(feature = "with_ctap2_1")]
const _DEFAULT_MIN_PIN_LENGTH_RP_IDS: Vec<String> = Vec::new();
// TODO(kaczmarczyck) Check whether this constant is necessary, or replace it accordingly.
#[cfg(feature = "with_ctap2_1")]
const _MAX_RP_IDS_LENGTH: usize = 8;
#[allow(clippy::enum_variant_names)]
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum Key {
// TODO(cretin): Test whether this doesn't consume too much memory. Otherwise, we can use less
// keys. Either only a simple enum value for all credentials, or group by rp_id.
Credential {
rp_id: Option<String>,
credential_id: Option<Vec<u8>>,
user_handle: Option<Vec<u8>>,
},
GlobalSignatureCounter,
MasterKeys,
PinHash,
PinRetries,
AttestationPrivateKey,
AttestationCertificate,
Aaguid,
#[cfg(feature = "with_ctap2_1")]
MinPinLength,
#[cfg(feature = "with_ctap2_1")]
MinPinLengthRpIds,
}
pub struct MasterKeys {
pub encryption: [u8; 32],
pub hmac: [u8; 32],
}
struct Config;
impl StoreConfig for Config {
type Key = Key;
fn num_tags(&self) -> usize {
NUM_TAGS
}
fn keys(&self, entry: StoreEntry, mut add: impl FnMut(Key)) {
match entry.tag {
TAG_CREDENTIAL => {
let credential = match deserialize_credential(entry.data) {
None => {
debug_assert!(false);
return;
}
Some(credential) => credential,
};
add(Key::Credential {
rp_id: Some(credential.rp_id.clone()),
credential_id: Some(credential.credential_id),
user_handle: None,
});
add(Key::Credential {
rp_id: Some(credential.rp_id.clone()),
credential_id: None,
user_handle: None,
});
add(Key::Credential {
rp_id: Some(credential.rp_id),
credential_id: None,
user_handle: Some(credential.user_handle),
});
add(Key::Credential {
rp_id: None,
credential_id: None,
user_handle: None,
});
}
GLOBAL_SIGNATURE_COUNTER => add(Key::GlobalSignatureCounter),
MASTER_KEYS => add(Key::MasterKeys),
PIN_HASH => add(Key::PinHash),
PIN_RETRIES => add(Key::PinRetries),
ATTESTATION_PRIVATE_KEY => add(Key::AttestationPrivateKey),
ATTESTATION_CERTIFICATE => add(Key::AttestationCertificate),
AAGUID => add(Key::Aaguid),
#[cfg(feature = "with_ctap2_1")]
MIN_PIN_LENGTH => add(Key::MinPinLength),
#[cfg(feature = "with_ctap2_1")]
MIN_PIN_LENGTH_RP_IDS => add(Key::MinPinLengthRpIds),
_ => debug_assert!(false),
}
}
}
pub struct PersistentStore {
store: embedded_flash::Store<Storage, Config>,
}
impl PersistentStore {
/// Gives access to the persistent store.
///
/// # Safety
///
/// This should be at most one instance of persistent store per program lifetime.
pub fn new(rng: &mut impl Rng256) -> PersistentStore {
#[cfg(not(any(test, feature = "ram_storage")))]
let storage = PersistentStore::new_prod_storage();
#[cfg(any(test, feature = "ram_storage"))]
let storage = PersistentStore::new_test_storage();
let mut store = PersistentStore {
store: embedded_flash::Store::new(storage, Config).unwrap(),
};
store.init(rng);
store
}
#[cfg(not(any(test, feature = "ram_storage")))]
fn new_prod_storage() -> Storage {
Storage::new(NUM_PAGES).unwrap()
}
#[cfg(any(test, feature = "ram_storage"))]
fn new_test_storage() -> Storage {
#[cfg(not(test))]
const PAGE_SIZE: usize = 0x100;
#[cfg(test)]
const PAGE_SIZE: usize = 0x1000;
let store = vec![0xff; NUM_PAGES * PAGE_SIZE].into_boxed_slice();
let options = embedded_flash::BufferOptions {
word_size: 4,
page_size: PAGE_SIZE,
max_word_writes: 2,
max_page_erases: 10000,
strict_write: true,
};
Storage::new(store, options)
}
fn init(&mut self, rng: &mut impl Rng256) {
if self.store.find_one(&Key::MasterKeys).is_none() {
let master_encryption_key = rng.gen_uniform_u8x32();
let master_hmac_key = rng.gen_uniform_u8x32();
let mut master_keys = Vec::with_capacity(64);
master_keys.extend_from_slice(&master_encryption_key);
master_keys.extend_from_slice(&master_hmac_key);
self.store
.insert(StoreEntry {
tag: MASTER_KEYS,
data: &master_keys,
sensitive: true,
})
.unwrap();
}
// TODO(jmichel): remove this when vendor command is in place
#[cfg(not(test))]
self.load_attestation_data_from_firmware();
if self.store.find_one(&Key::Aaguid).is_none() {
self.set_aaguid(key_material::AAGUID).unwrap();
}
}
// TODO(jmichel): remove this function when vendor command is in place.
#[cfg(not(test))]
fn load_attestation_data_from_firmware(&mut self) {
// The following 2 entries are meant to be written by vendor-specific commands.
if self.store.find_one(&Key::AttestationPrivateKey).is_none() {
self.set_attestation_private_key(key_material::ATTESTATION_PRIVATE_KEY)
.unwrap();
}
if self.store.find_one(&Key::AttestationCertificate).is_none() {
self.set_attestation_certificate(key_material::ATTESTATION_CERTIFICATE)
.unwrap();
}
}
pub fn find_credential(
&self,
rp_id: &str,
credential_id: &[u8],
check_cred_protect: bool,
) -> Result<Option<PublicKeyCredentialSource>, Ctap2StatusCode> {
let key = Key::Credential {
rp_id: Some(rp_id.into()),
credential_id: Some(credential_id.into()),
user_handle: None,
};
let entry = match self.store.find_one(&key) {
None => return Ok(None),
Some((_, entry)) => entry,
};
debug_assert_eq!(entry.tag, TAG_CREDENTIAL);
let result = deserialize_credential(entry.data);
debug_assert!(result.is_some());
let user_verification_required = result.as_ref().map_or(false, |cred| {
cred.cred_protect_policy == Some(CredentialProtectionPolicy::UserVerificationRequired)
});
if check_cred_protect && user_verification_required {
Ok(None)
} else {
Ok(result)
}
}
pub fn store_credential(
&mut self,
credential: PublicKeyCredentialSource,
) -> Result<(), Ctap2StatusCode> {
let key = Key::Credential {
rp_id: Some(credential.rp_id.clone()),
credential_id: None,
user_handle: Some(credential.user_handle.clone()),
};
let old_entry = self.store.find_one(&key);
if old_entry.is_none() && self.count_credentials()? >= MAX_SUPPORTED_RESIDENTIAL_KEYS {
return Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL);
}
let credential = serialize_credential(credential)?;
let new_entry = StoreEntry {
tag: TAG_CREDENTIAL,
data: &credential,
sensitive: true,
};
match old_entry {
None => self.store.insert(new_entry)?,
Some((index, old_entry)) => {
debug_assert_eq!(old_entry.tag, TAG_CREDENTIAL);
self.store.replace(index, new_entry)?
}
};
Ok(())
}
pub fn filter_credential(
&self,
rp_id: &str,
check_cred_protect: bool,
) -> Result<Vec<PublicKeyCredentialSource>, Ctap2StatusCode> {
Ok(self
.store
.find_all(&Key::Credential {
rp_id: Some(rp_id.into()),
credential_id: None,
user_handle: None,
})
.filter_map(|(_, entry)| {
debug_assert_eq!(entry.tag, TAG_CREDENTIAL);
let credential = deserialize_credential(entry.data);
debug_assert!(credential.is_some());
credential
})
.filter(|cred| !check_cred_protect || cred.is_discoverable())
.collect())
}
pub fn count_credentials(&self) -> Result<usize, Ctap2StatusCode> {
Ok(self
.store
.find_all(&Key::Credential {
rp_id: None,
credential_id: None,
user_handle: None,
})
.count())
}
pub fn new_creation_order(&self) -> Result<u64, Ctap2StatusCode> {
Ok(self
.store
.find_all(&Key::Credential {
rp_id: None,
credential_id: None,
user_handle: None,
})
.filter_map(|(_, entry)| {
debug_assert_eq!(entry.tag, TAG_CREDENTIAL);
let credential = deserialize_credential(entry.data);
debug_assert!(credential.is_some());
credential
})
.map(|c| c.creation_order)
.max()
.unwrap_or(0)
.wrapping_add(1))
}
pub fn global_signature_counter(&self) -> Result<u32, Ctap2StatusCode> {
Ok(self
.store
.find_one(&Key::GlobalSignatureCounter)
.map_or(0, |(_, entry)| {
u32::from_ne_bytes(*array_ref!(entry.data, 0, 4))
}))
}
pub fn incr_global_signature_counter(&mut self) -> Result<(), Ctap2StatusCode> {
let mut buffer = [0; core::mem::size_of::<u32>()];
match self.store.find_one(&Key::GlobalSignatureCounter) {
None => {
buffer.copy_from_slice(&1u32.to_ne_bytes());
self.store.insert(StoreEntry {
tag: GLOBAL_SIGNATURE_COUNTER,
data: &buffer,
sensitive: false,
})?;
}
Some((index, entry)) => {
let value = u32::from_ne_bytes(*array_ref!(entry.data, 0, 4));
// In hopes that servers handle the wrapping gracefully.
buffer.copy_from_slice(&value.wrapping_add(1).to_ne_bytes());
self.store.replace(
index,
StoreEntry {
tag: GLOBAL_SIGNATURE_COUNTER,
data: &buffer,
sensitive: false,
},
)?;
}
}
Ok(())
}
pub fn master_keys(&self) -> Result<MasterKeys, Ctap2StatusCode> {
let (_, entry) = self.store.find_one(&Key::MasterKeys).unwrap();
if entry.data.len() != 64 {
return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR);
}
Ok(MasterKeys {
encryption: *array_ref![entry.data, 0, 32],
hmac: *array_ref![entry.data, 32, 32],
})
}
pub fn pin_hash(&self) -> Result<Option<[u8; PIN_AUTH_LENGTH]>, Ctap2StatusCode> {
let data = match self.store.find_one(&Key::PinHash) {
None => return Ok(None),
Some((_, entry)) => entry.data,
};
if data.len() != PIN_AUTH_LENGTH {
return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR);
}
Ok(Some(*array_ref![data, 0, PIN_AUTH_LENGTH]))
}
pub fn set_pin_hash(
&mut self,
pin_hash: &[u8; PIN_AUTH_LENGTH],
) -> Result<(), Ctap2StatusCode> {
let entry = StoreEntry {
tag: PIN_HASH,
data: pin_hash,
sensitive: true,
};
match self.store.find_one(&Key::PinHash) {
None => self.store.insert(entry)?,
Some((index, _)) => self.store.replace(index, entry)?,
}
Ok(())
}
pub fn pin_retries(&self) -> Result<u8, Ctap2StatusCode> {
Ok(self
.store
.find_one(&Key::PinRetries)
.map_or(MAX_PIN_RETRIES, |(_, entry)| {
debug_assert_eq!(entry.data.len(), 1);
entry.data[0]
}))
}
pub fn decr_pin_retries(&mut self) -> Result<(), Ctap2StatusCode> {
match self.store.find_one(&Key::PinRetries) {
None => {
self.store.insert(StoreEntry {
tag: PIN_RETRIES,
data: &[MAX_PIN_RETRIES.saturating_sub(1)],
sensitive: false,
})?;
}
Some((index, entry)) => {
debug_assert_eq!(entry.data.len(), 1);
if entry.data[0] == 0 {
return Ok(());
}
let new_value = entry.data[0].saturating_sub(1);
self.store.replace(
index,
StoreEntry {
tag: PIN_RETRIES,
data: &[new_value],
sensitive: false,
},
)?;
}
}
Ok(())
}
pub fn reset_pin_retries(&mut self) -> Result<(), Ctap2StatusCode> {
if let Some((index, _)) = self.store.find_one(&Key::PinRetries) {
self.store.delete(index)?;
}
Ok(())
}
#[cfg(feature = "with_ctap2_1")]
pub fn min_pin_length(&self) -> Result<u8, Ctap2StatusCode> {
Ok(self
.store
.find_one(&Key::MinPinLength)
.map_or(DEFAULT_MIN_PIN_LENGTH, |(_, entry)| {
debug_assert_eq!(entry.data.len(), 1);
entry.data[0]
}))
}
#[cfg(feature = "with_ctap2_1")]
pub fn set_min_pin_length(&mut self, min_pin_length: u8) -> Result<(), Ctap2StatusCode> {
let entry = StoreEntry {
tag: MIN_PIN_LENGTH,
data: &[min_pin_length],
sensitive: false,
};
Ok(match self.store.find_one(&Key::MinPinLength) {
None => self.store.insert(entry)?,
Some((index, _)) => self.store.replace(index, entry)?,
})
}
#[cfg(feature = "with_ctap2_1")]
pub fn _min_pin_length_rp_ids(&self) -> Result<Vec<String>, Ctap2StatusCode> {
let rp_ids = self
.store
.find_one(&Key::MinPinLengthRpIds)
.map_or(Some(_DEFAULT_MIN_PIN_LENGTH_RP_IDS), |(_, entry)| {
_deserialize_min_pin_length_rp_ids(entry.data)
});
debug_assert!(rp_ids.is_some());
Ok(rp_ids.unwrap_or(vec![]))
}
#[cfg(feature = "with_ctap2_1")]
pub fn _set_min_pin_length_rp_ids(
&mut self,
min_pin_length_rp_ids: Vec<String>,
) -> Result<(), Ctap2StatusCode> {
let mut min_pin_length_rp_ids = min_pin_length_rp_ids;
for rp_id in _DEFAULT_MIN_PIN_LENGTH_RP_IDS {
if !min_pin_length_rp_ids.contains(&rp_id) {
min_pin_length_rp_ids.push(rp_id);
}
}
if min_pin_length_rp_ids.len() > _MAX_RP_IDS_LENGTH {
return Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL);
}
let entry = StoreEntry {
tag: MIN_PIN_LENGTH_RP_IDS,
data: &_serialize_min_pin_length_rp_ids(min_pin_length_rp_ids)?,
sensitive: false,
};
match self.store.find_one(&Key::MinPinLengthRpIds) {
None => {
self.store.insert(entry).unwrap();
}
Some((index, _)) => {
self.store.replace(index, entry).unwrap();
}
}
Ok(())
}
pub fn attestation_private_key(
&self,
) -> Result<Option<&[u8; key_material::ATTESTATION_PRIVATE_KEY_LENGTH]>, Ctap2StatusCode> {
let data = match self.store.find_one(&Key::AttestationPrivateKey) {
None => return Ok(None),
Some((_, entry)) => entry.data,
};
if data.len() != key_material::ATTESTATION_PRIVATE_KEY_LENGTH {
return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR);
}
Ok(Some(array_ref!(
data,
0,
key_material::ATTESTATION_PRIVATE_KEY_LENGTH
)))
}
pub fn set_attestation_private_key(
&mut self,
attestation_private_key: &[u8; key_material::ATTESTATION_PRIVATE_KEY_LENGTH],
) -> Result<(), Ctap2StatusCode> {
let entry = StoreEntry {
tag: ATTESTATION_PRIVATE_KEY,
data: attestation_private_key,
sensitive: true,
};
match self.store.find_one(&Key::AttestationPrivateKey) {
None => self.store.insert(entry)?,
_ => return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR),
}
Ok(())
}
pub fn attestation_certificate(&self) -> Result<Option<Vec<u8>>, Ctap2StatusCode> {
let data = match self.store.find_one(&Key::AttestationCertificate) {
None => return Ok(None),
Some((_, entry)) => entry.data,
};
Ok(Some(data.to_vec()))
}
pub fn set_attestation_certificate(
&mut self,
attestation_certificate: &[u8],
) -> Result<(), Ctap2StatusCode> {
let entry = StoreEntry {
tag: ATTESTATION_CERTIFICATE,
data: attestation_certificate,
sensitive: false,
};
match self.store.find_one(&Key::AttestationCertificate) {
None => self.store.insert(entry)?,
_ => return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR),
}
Ok(())
}
pub fn aaguid(&self) -> Result<[u8; key_material::AAGUID_LENGTH], Ctap2StatusCode> {
let (_, entry) = self
.store
.find_one(&Key::Aaguid)
.ok_or(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?;
let data = entry.data;
if data.len() != key_material::AAGUID_LENGTH {
return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR);
}
Ok(*array_ref![data, 0, key_material::AAGUID_LENGTH])
}
pub fn set_aaguid(
&mut self,
aaguid: &[u8; key_material::AAGUID_LENGTH],
) -> Result<(), Ctap2StatusCode> {
let entry = StoreEntry {
tag: AAGUID,
data: aaguid,
sensitive: false,
};
match self.store.find_one(&Key::Aaguid) {
None => self.store.insert(entry)?,
Some((index, _)) => self.store.replace(index, entry)?,
}
Ok(())
}
pub fn reset(&mut self, rng: &mut impl Rng256) -> Result<(), Ctap2StatusCode> {
loop {
let index = {
let mut iter = self.store.iter().filter(|(_, entry)| should_reset(entry));
match iter.next() {
None => break,
Some((index, _)) => index,
}
};
self.store.delete(index)?;
}
self.init(rng);
Ok(())
}
}
impl From<StoreError> for Ctap2StatusCode {
fn from(error: StoreError) -> Ctap2StatusCode {
match error {
StoreError::StoreFull => Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL,
StoreError::InvalidTag => unreachable!(),
StoreError::InvalidPrecondition => unreachable!(),
}
}
}
fn should_reset(entry: &StoreEntry<'_>) -> bool {
match entry.tag {
ATTESTATION_PRIVATE_KEY | ATTESTATION_CERTIFICATE | AAGUID => false,
_ => true,
}
}
fn deserialize_credential(data: &[u8]) -> Option<PublicKeyCredentialSource> {
let cbor = cbor::read(data).ok()?;
cbor.try_into().ok()
}
fn serialize_credential(credential: PublicKeyCredentialSource) -> Result<Vec<u8>, Ctap2StatusCode> {
let mut data = Vec::new();
if cbor::write(credential.into(), &mut data) {
Ok(data)
} else {
Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_RESPONSE_CANNOT_WRITE_CBOR)
}
}
#[cfg(feature = "with_ctap2_1")]
fn _deserialize_min_pin_length_rp_ids(data: &[u8]) -> Option<Vec<String>> {
let cbor = cbor::read(data).ok()?;
extract_array(cbor)
.ok()?
.into_iter()
.map(extract_text_string)
.collect::<Result<Vec<String>, Ctap2StatusCode>>()
.ok()
}
#[cfg(feature = "with_ctap2_1")]
fn _serialize_min_pin_length_rp_ids(rp_ids: Vec<String>) -> Result<Vec<u8>, Ctap2StatusCode> {
let mut data = Vec::new();
if cbor::write(cbor_array_vec!(rp_ids), &mut data) {
Ok(data)
} else {
Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_RESPONSE_CANNOT_WRITE_CBOR)
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::ctap::data_formats::{PublicKeyCredentialSource, PublicKeyCredentialType};
use crypto::rng256::{Rng256, ThreadRng256};
fn create_credential_source(
rng: &mut ThreadRng256,
rp_id: &str,
user_handle: Vec<u8>,
) -> PublicKeyCredentialSource {
let private_key = crypto::ecdsa::SecKey::gensk(rng);
PublicKeyCredentialSource {
key_type: PublicKeyCredentialType::PublicKey,
credential_id: rng.gen_uniform_u8x32().to_vec(),
private_key,
rp_id: String::from(rp_id),
user_handle,
user_display_name: None,
cred_random: None,
cred_protect_policy: None,
creation_order: 0,
user_name: None,
user_icon: None,
}
}
#[test]
fn format_overhead() {
// nRF52840 NVMC
const WORD_SIZE: usize = 4;
const PAGE_SIZE: usize = 0x1000;
const NUM_PAGES: usize = 100;
let store = vec![0xff; NUM_PAGES * PAGE_SIZE].into_boxed_slice();
let options = embedded_flash::BufferOptions {
word_size: WORD_SIZE,
page_size: PAGE_SIZE,
max_word_writes: 2,
max_page_erases: 10000,
strict_write: true,
};
let storage = Storage::new(store, options);
let store = embedded_flash::Store::new(storage, Config).unwrap();
// We can replace 3 bytes with minimal overhead.
assert_eq!(store.replace_len(false, 0), 2 * WORD_SIZE);
assert_eq!(store.replace_len(false, 3), 3 * WORD_SIZE);
assert_eq!(store.replace_len(false, 4), 3 * WORD_SIZE);
}
#[test]
fn test_store() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
let credential_source = create_credential_source(&mut rng, "example.com", vec![]);
assert!(persistent_store.store_credential(credential_source).is_ok());
assert!(persistent_store.count_credentials().unwrap() > 0);
}
#[test]
fn test_credential_order() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
let credential_source = create_credential_source(&mut rng, "example.com", vec![]);
let current_latest_creation = credential_source.creation_order;
assert!(persistent_store.store_credential(credential_source).is_ok());
let mut credential_source = create_credential_source(&mut rng, "example.com", vec![]);
credential_source.creation_order = persistent_store.new_creation_order().unwrap();
assert!(credential_source.creation_order > current_latest_creation);
let current_latest_creation = credential_source.creation_order;
assert!(persistent_store.store_credential(credential_source).is_ok());
assert!(persistent_store.new_creation_order().unwrap() > current_latest_creation);
}
#[test]
#[allow(clippy::assertions_on_constants)]
fn test_fill_store() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
// To make this test work for bigger storages, implement better int -> Vec conversion.
assert!(MAX_SUPPORTED_RESIDENTIAL_KEYS < 256);
for i in 0..MAX_SUPPORTED_RESIDENTIAL_KEYS {
let credential_source =
create_credential_source(&mut rng, "example.com", vec![i as u8]);
assert!(persistent_store.store_credential(credential_source).is_ok());
assert_eq!(persistent_store.count_credentials().unwrap(), i + 1);
}
let credential_source = create_credential_source(
&mut rng,
"example.com",
vec![MAX_SUPPORTED_RESIDENTIAL_KEYS as u8],
);
assert_eq!(
persistent_store.store_credential(credential_source),
Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL)
);
assert_eq!(
persistent_store.count_credentials().unwrap(),
MAX_SUPPORTED_RESIDENTIAL_KEYS
);
}
#[test]
#[allow(clippy::assertions_on_constants)]
fn test_overwrite() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
// These should have different IDs.
let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]);
let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x00]);
let expected_credential = credential_source1.clone();
assert!(persistent_store
.store_credential(credential_source0)
.is_ok());
assert!(persistent_store
.store_credential(credential_source1)
.is_ok());
assert_eq!(persistent_store.count_credentials().unwrap(), 1);
assert_eq!(
&persistent_store
.filter_credential("example.com", false)
.unwrap(),
&[expected_credential]
);
// To make this test work for bigger storages, implement better int -> Vec conversion.
assert!(MAX_SUPPORTED_RESIDENTIAL_KEYS < 256);
for i in 0..MAX_SUPPORTED_RESIDENTIAL_KEYS {
let credential_source =
create_credential_source(&mut rng, "example.com", vec![i as u8]);
assert!(persistent_store.store_credential(credential_source).is_ok());
assert_eq!(persistent_store.count_credentials().unwrap(), i + 1);
}
let credential_source = create_credential_source(
&mut rng,
"example.com",
vec![MAX_SUPPORTED_RESIDENTIAL_KEYS as u8],
);
assert_eq!(
persistent_store.store_credential(credential_source),
Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL)
);
assert_eq!(
persistent_store.count_credentials().unwrap(),
MAX_SUPPORTED_RESIDENTIAL_KEYS
);
}
#[test]
fn test_filter() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]);
let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x01]);
let credential_source2 =
create_credential_source(&mut rng, "another.example.com", vec![0x02]);
let id0 = credential_source0.credential_id.clone();
let id1 = credential_source1.credential_id.clone();
assert!(persistent_store
.store_credential(credential_source0)
.is_ok());
assert!(persistent_store
.store_credential(credential_source1)
.is_ok());
assert!(persistent_store
.store_credential(credential_source2)
.is_ok());
let filtered_credentials = persistent_store
.filter_credential("example.com", false)
.unwrap();
assert_eq!(filtered_credentials.len(), 2);
assert!(
(filtered_credentials[0].credential_id == id0
&& filtered_credentials[1].credential_id == id1)
|| (filtered_credentials[1].credential_id == id0
&& filtered_credentials[0].credential_id == id1)
);
}
#[test]
fn test_filter_with_cred_protect() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
let private_key = crypto::ecdsa::SecKey::gensk(&mut rng);
let credential = PublicKeyCredentialSource {
key_type: PublicKeyCredentialType::PublicKey,
credential_id: rng.gen_uniform_u8x32().to_vec(),
private_key,
rp_id: String::from("example.com"),
user_handle: vec![0x00],
user_display_name: None,
cred_random: None,
cred_protect_policy: Some(
CredentialProtectionPolicy::UserVerificationOptionalWithCredentialIdList,
),
creation_order: 0,
user_name: None,
user_icon: None,
};
assert!(persistent_store.store_credential(credential).is_ok());
let no_credential = persistent_store
.filter_credential("example.com", true)
.unwrap();
assert_eq!(no_credential, vec![]);
}
#[test]
fn test_find() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]);
let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x01]);
let id0 = credential_source0.credential_id.clone();
let key0 = credential_source0.private_key.clone();
assert!(persistent_store
.store_credential(credential_source0)
.is_ok());
assert!(persistent_store
.store_credential(credential_source1)
.is_ok());
let no_credential = persistent_store
.find_credential("another.example.com", &id0, false)
.unwrap();
assert_eq!(no_credential, None);
let found_credential = persistent_store
.find_credential("example.com", &id0, false)
.unwrap();
let expected_credential = PublicKeyCredentialSource {
key_type: PublicKeyCredentialType::PublicKey,
credential_id: id0,
private_key: key0,
rp_id: String::from("example.com"),
user_handle: vec![0x00],
user_display_name: None,
cred_random: None,
cred_protect_policy: None,
creation_order: 0,
user_name: None,
user_icon: None,
};
assert_eq!(found_credential, Some(expected_credential));
}
#[test]
fn test_find_with_cred_protect() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
let private_key = crypto::ecdsa::SecKey::gensk(&mut rng);
let credential = PublicKeyCredentialSource {
key_type: PublicKeyCredentialType::PublicKey,
credential_id: rng.gen_uniform_u8x32().to_vec(),
private_key,
rp_id: String::from("example.com"),
user_handle: vec![0x00],
user_display_name: None,
cred_random: None,
cred_protect_policy: Some(CredentialProtectionPolicy::UserVerificationRequired),
creation_order: 0,
user_name: None,
user_icon: None,
};
assert!(persistent_store.store_credential(credential).is_ok());
let no_credential = persistent_store
.find_credential("example.com", &[0x00], true)
.unwrap();
assert_eq!(no_credential, None);
}
#[test]
fn test_master_keys() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
// Master keys stay the same between resets.
let master_keys_1 = persistent_store.master_keys().unwrap();
let master_keys_2 = persistent_store.master_keys().unwrap();
assert_eq!(master_keys_2.encryption, master_keys_1.encryption);
assert_eq!(master_keys_2.hmac, master_keys_1.hmac);
// Master keys change after reset. This test may fail if the random generator produces the
// same keys.
let master_encryption_key = master_keys_1.encryption.to_vec();
let master_hmac_key = master_keys_1.hmac.to_vec();
persistent_store.reset(&mut rng).unwrap();
let master_keys_3 = persistent_store.master_keys().unwrap();
assert!(master_keys_3.encryption != master_encryption_key.as_slice());
assert!(master_keys_3.hmac != master_hmac_key.as_slice());
}
#[test]
fn test_pin_hash() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
// Pin hash is initially not set.
assert!(persistent_store.pin_hash().unwrap().is_none());
// Setting the pin hash sets the pin hash.
let random_data = rng.gen_uniform_u8x32();
assert_eq!(random_data.len(), 2 * PIN_AUTH_LENGTH);
let pin_hash_1 = *array_ref!(random_data, 0, PIN_AUTH_LENGTH);
let pin_hash_2 = *array_ref!(random_data, PIN_AUTH_LENGTH, PIN_AUTH_LENGTH);
persistent_store.set_pin_hash(&pin_hash_1).unwrap();
assert_eq!(persistent_store.pin_hash().unwrap(), Some(pin_hash_1));
assert_eq!(persistent_store.pin_hash().unwrap(), Some(pin_hash_1));
persistent_store.set_pin_hash(&pin_hash_2).unwrap();
assert_eq!(persistent_store.pin_hash().unwrap(), Some(pin_hash_2));
assert_eq!(persistent_store.pin_hash().unwrap(), Some(pin_hash_2));
// Resetting the storage resets the pin hash.
persistent_store.reset(&mut rng).unwrap();
assert!(persistent_store.pin_hash().unwrap().is_none());
}
#[test]
fn test_pin_retries() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
// The pin retries is initially at the maximum.
assert_eq!(persistent_store.pin_retries().unwrap(), MAX_PIN_RETRIES);
// Decrementing the pin retries decrements the pin retries.
for pin_retries in (0..MAX_PIN_RETRIES).rev() {
persistent_store.decr_pin_retries().unwrap();
assert_eq!(persistent_store.pin_retries().unwrap(), pin_retries);
}
// Decrementing the pin retries after zero does not modify the pin retries.
persistent_store.decr_pin_retries().unwrap();
assert_eq!(persistent_store.pin_retries().unwrap(), 0);
// Resetting the pin retries resets the pin retries.
persistent_store.reset_pin_retries().unwrap();
assert_eq!(persistent_store.pin_retries().unwrap(), MAX_PIN_RETRIES);
}
#[test]
fn test_persistent_keys() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
// Make sure the attestation are absent. There is no batch attestation in tests.
assert!(persistent_store
.attestation_private_key()
.unwrap()
.is_none());
assert!(persistent_store
.attestation_certificate()
.unwrap()
.is_none());
// Make sure the persistent keys are initialized.
persistent_store
.set_attestation_private_key(key_material::ATTESTATION_PRIVATE_KEY)
.unwrap();
persistent_store
.set_attestation_certificate(key_material::ATTESTATION_CERTIFICATE)
.unwrap();
assert_eq!(&persistent_store.aaguid().unwrap(), key_material::AAGUID);
// The persistent keys stay initialized and preserve their value after a reset.
persistent_store.reset(&mut rng).unwrap();
assert_eq!(
persistent_store.attestation_private_key().unwrap().unwrap(),
key_material::ATTESTATION_PRIVATE_KEY
);
assert_eq!(
persistent_store.attestation_certificate().unwrap().unwrap(),
key_material::ATTESTATION_CERTIFICATE
);
assert_eq!(&persistent_store.aaguid().unwrap(), key_material::AAGUID);
}
#[cfg(feature = "with_ctap2_1")]
#[test]
fn test_min_pin_length() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
// The minimum PIN length is initially at the default.
assert_eq!(
persistent_store.min_pin_length().unwrap(),
DEFAULT_MIN_PIN_LENGTH
);
// Changes by the setter are reflected by the getter..
let new_min_pin_length = 8;
persistent_store
.set_min_pin_length(new_min_pin_length)
.unwrap();
assert_eq!(
persistent_store.min_pin_length().unwrap(),
new_min_pin_length
);
}
#[cfg(feature = "with_ctap2_1")]
#[test]
fn test_min_pin_length_rp_ids() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
// The minimum PIN length RP IDs are initially at the default.
assert_eq!(
persistent_store._min_pin_length_rp_ids().unwrap(),
_DEFAULT_MIN_PIN_LENGTH_RP_IDS
);
// Changes by the setter are reflected by the getter.
let mut rp_ids = vec![String::from("example.com")];
assert_eq!(
persistent_store._set_min_pin_length_rp_ids(rp_ids.clone()),
Ok(())
);
for rp_id in _DEFAULT_MIN_PIN_LENGTH_RP_IDS {
if !rp_ids.contains(&rp_id) {
rp_ids.push(rp_id);
}
}
assert_eq!(persistent_store._min_pin_length_rp_ids().unwrap(), rp_ids);
}
#[test]
fn test_serialize_deserialize_credential() {
let mut rng = ThreadRng256 {};
let private_key = crypto::ecdsa::SecKey::gensk(&mut rng);
let credential = PublicKeyCredentialSource {
key_type: PublicKeyCredentialType::PublicKey,
credential_id: rng.gen_uniform_u8x32().to_vec(),
private_key,
rp_id: String::from("example.com"),
user_handle: vec![0x00],
user_display_name: None,
cred_random: None,
cred_protect_policy: None,
creation_order: 0,
user_name: None,
user_icon: None,
};
let serialized = serialize_credential(credential.clone()).unwrap();
let reconstructed = deserialize_credential(&serialized).unwrap();
assert_eq!(credential, reconstructed);
}
#[cfg(feature = "with_ctap2_1")]
#[test]
fn test_serialize_deserialize_min_pin_length_rp_ids() {
let rp_ids = vec![String::from("example.com")];
let serialized = _serialize_min_pin_length_rp_ids(rp_ids.clone()).unwrap();
let reconstructed = _deserialize_min_pin_length_rp_ids(&serialized).unwrap();
assert_eq!(rp_ids, reconstructed);
}
}