// Copyright 2019-2021 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. pub mod apdu; mod client_pin; pub mod command; mod config_command; mod credential_management; mod crypto_wrapper; #[cfg(feature = "with_ctap1")] mod ctap1; mod customization; pub mod data_formats; pub mod hid; mod key_material; mod large_blobs; mod pin_protocol; pub mod response; pub mod status_code; mod storage; mod timed_permission; mod token_state; use self::client_pin::{ClientPin, PinPermission}; use self::command::{ AuthenticatorGetAssertionParameters, AuthenticatorMakeCredentialParameters, AuthenticatorVendorConfigureParameters, AuthenticatorVendorUpgradeParameters, Command, }; use self::config_command::process_config; use self::credential_management::process_credential_management; use self::crypto_wrapper::{aes256_cbc_decrypt, aes256_cbc_encrypt}; use self::customization::{ DEFAULT_CRED_PROTECT, ENTERPRISE_ATTESTATION_MODE, ENTERPRISE_RP_ID_LIST, MAX_CREDENTIAL_COUNT_IN_LIST, MAX_CRED_BLOB_LENGTH, MAX_LARGE_BLOB_ARRAY_SIZE, MAX_MSG_SIZE, MAX_RP_IDS_LENGTH, USE_BATCH_ATTESTATION, USE_SIGNATURE_COUNTER, }; use self::data_formats::{ AuthenticatorTransport, CoseKey, CoseSignature, CredentialProtectionPolicy, EnterpriseAttestationMode, GetAssertionExtensions, PackedAttestationStatement, PinUvAuthProtocol, PublicKeyCredentialDescriptor, PublicKeyCredentialParameter, PublicKeyCredentialSource, PublicKeyCredentialType, PublicKeyCredentialUserEntity, SignatureAlgorithm, }; use self::hid::ChannelID; use self::large_blobs::LargeBlobs; use self::response::{ AuthenticatorGetAssertionResponse, AuthenticatorGetInfoResponse, AuthenticatorMakeCredentialResponse, AuthenticatorVendorConfigureResponse, AuthenticatorVendorUpgradeInfoResponse, ResponseData, }; use self::status_code::Ctap2StatusCode; use self::storage::PersistentStore; use self::timed_permission::TimedPermission; #[cfg(feature = "with_ctap1")] use self::timed_permission::U2fUserPresenceState; use crate::embedded_flash::{UpgradeLocations, UpgradeStorage}; use alloc::boxed::Box; use alloc::string::{String, ToString}; use alloc::vec; use alloc::vec::Vec; use arrayref::array_ref; use byteorder::{BigEndian, ByteOrder}; use core::convert::TryFrom; #[cfg(feature = "debug_ctap")] use core::fmt::Write; use crypto::ecdsa; use crypto::hmac::{hmac_256, verify_hmac_256}; use crypto::rng256::Rng256; use crypto::sha256::Sha256; use crypto::Hash256; #[cfg(feature = "debug_ctap")] use libtock_drivers::console::Console; use libtock_drivers::crp; use libtock_drivers::timer::{ClockValue, Duration}; use sk_cbor as cbor; use sk_cbor::cbor_map_options; pub const INITIAL_SIGNATURE_COUNTER: u32 = 1; // Our credential ID consists of // - 16 byte initialization vector for AES-256, // - 32 byte ECDSA private key for the credential, // - 32 byte relying party ID hashed with SHA256, // - 32 byte HMAC-SHA256 over everything else. pub const CREDENTIAL_ID_SIZE: usize = 112; // Set this bit when checking user presence. const UP_FLAG: u8 = 0x01; // Set this bit when checking user verification. const UV_FLAG: u8 = 0x04; // Set this bit when performing attestation. const AT_FLAG: u8 = 0x40; // Set this bit when an extension is used. const ED_FLAG: u8 = 0x80; // CTAP2 specification section 6 requires that the depth of nested CBOR structures be limited to at most four levels. const MAX_CBOR_NESTING_DEPTH: i8 = 4; pub const TOUCH_TIMEOUT_MS: isize = 30000; #[cfg(feature = "with_ctap1")] const U2F_UP_PROMPT_TIMEOUT: Duration = Duration::from_ms(10000); // TODO(kaczmarczyck) 2.1 allows Reset after Reset and 15 seconds? const RESET_TIMEOUT_DURATION: Duration = Duration::from_ms(10000); const STATEFUL_COMMAND_TIMEOUT_DURATION: Duration = Duration::from_ms(30000); pub const FIDO2_VERSION_STRING: &str = "FIDO_2_0"; #[cfg(feature = "with_ctap1")] pub const U2F_VERSION_STRING: &str = "U2F_V2"; // TODO(#106) change to final string when ready pub const FIDO2_1_VERSION_STRING: &str = "FIDO_2_1_PRE"; // We currently only support one algorithm for signatures: ES256. // This algorithm is requested in MakeCredential and advertized in GetInfo. pub const ES256_CRED_PARAM: PublicKeyCredentialParameter = PublicKeyCredentialParameter { cred_type: PublicKeyCredentialType::PublicKey, alg: SignatureAlgorithm::ES256, }; // Helpers to perform CBOR read/write while respecting CTAP2 nesting limits. pub fn cbor_read(encoded_cbor: &[u8]) -> Result { cbor::reader::read_nested(encoded_cbor, Some(MAX_CBOR_NESTING_DEPTH)) .map_err(|_e| Ctap2StatusCode::CTAP2_ERR_INVALID_CBOR) } fn cbor_write(value: cbor::Value, mut encoded_cbor: &mut Vec) -> Result<(), Ctap2StatusCode> { cbor::writer::write_nested(value, &mut encoded_cbor, Some(MAX_CBOR_NESTING_DEPTH)) .map_err(|_e| Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR) } // This function is adapted from https://doc.rust-lang.org/nightly/src/core/str/mod.rs.html#2110 // (as of 2020-01-20) and truncates to "max" bytes, not breaking the encoding. // We change the return value, since we don't need the bool. fn truncate_to_char_boundary(s: &str, mut max: usize) -> &str { if max >= s.len() { s } else { while !s.is_char_boundary(max) { max -= 1; } &s[..max] } } /// Parses the metadata of an upgrade, and checks its correctness. /// /// Returns the hash over the upgrade, including partition and some metadata. /// The metadata consists of: /// - 32B upgrade hash (SHA256) /// - 4B timestamp (little endian encoding) /// - 4B partition address (little endian encoding) /// The upgrade hash is computed over the firmware image and all metadata, /// except the hash itself. fn parse_metadata( upgrade_locations: &UpgradeLocations, metadata: &[u8], ) -> Result<[u8; 32], Ctap2StatusCode> { const METADATA_LEN: usize = 40; if metadata.len() != METADATA_LEN { return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER); } // The hash implementation handles this in chunks, so no memory issues. let partition_slice = upgrade_locations .read_partition(0, upgrade_locations.partition_length()) .map_err(|_| Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?; let mut hasher = Sha256::new(); hasher.update(partition_slice); hasher.update(&metadata[32..METADATA_LEN]); let computed_hash = hasher.finalize(); if &computed_hash != array_ref!(metadata, 0, 32) { return Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE); } Ok(computed_hash) } /// Verifies the signature over the given hash. /// /// The public key is COSE encoded, and the hash is a SHA256. fn verify_signature( signature: Option, public_key_bytes: &[u8], signed_hash: &[u8; 32], ) -> Result<(), Ctap2StatusCode> { let signature = ecdsa::Signature::try_from(signature.ok_or(Ctap2StatusCode::CTAP2_ERR_MISSING_PARAMETER)?)?; let cbor_public_key = cbor_read(public_key_bytes)?; let cose_key = CoseKey::try_from(cbor_public_key)?; let public_key = ecdsa::PubKey::try_from(cose_key)?; if !public_key.verify_hash_vartime(signed_hash, &signature) { return Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE); } Ok(()) } /// Holds data necessary to sign an assertion for a credential. #[derive(Clone)] pub struct AssertionInput { client_data_hash: Vec, auth_data: Vec, extensions: GetAssertionExtensions, has_uv: bool, } /// Contains the state we need to store for GetNextAssertion. pub struct AssertionState { assertion_input: AssertionInput, // Sorted by ascending order of creation, so the last element is the most recent one. next_credential_keys: Vec, } /// Stores which command currently holds state for subsequent calls. pub enum StatefulCommand { Reset, GetAssertion(Box), EnumerateRps(usize), EnumerateCredentials(Vec), } /// Stores the current CTAP command state and when it times out. /// /// Some commands are executed in a series of calls to the authenticator. /// Interleaving calls to other commands interrupt the current command and /// remove all state and permissions. Power cycling allows the Reset command, /// and to prevent misuse or accidents, we disallow Reset after receiving /// different commands. Therefore, Reset behaves just like all other stateful /// commands and is included here. Please note that the allowed time for Reset /// differs from all other stateful commands. pub struct StatefulPermission { permission: TimedPermission, command_type: Option, } impl StatefulPermission { /// Creates the command state at device startup. /// /// Resets are only possible after a power cycle. Therefore, initialization /// means allowing Reset, and Reset cannot be granted later. pub fn new_reset(now: ClockValue) -> StatefulPermission { StatefulPermission { permission: TimedPermission::granted(now, RESET_TIMEOUT_DURATION), command_type: Some(StatefulCommand::Reset), } } /// Clears all permissions and state. pub fn clear(&mut self) { self.permission = TimedPermission::waiting(); self.command_type = None; } /// Checks the permission timeout. pub fn check_command_permission(&mut self, now: ClockValue) -> Result<(), Ctap2StatusCode> { if self.permission.is_granted(now) { Ok(()) } else { self.clear(); Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) } } /// Gets a reference to the current command state, if any exists. pub fn get_command(&self) -> Result<&StatefulCommand, Ctap2StatusCode> { self.command_type .as_ref() .ok_or(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) } /// Sets a new command state, and starts a new clock for timeouts. pub fn set_command(&mut self, now: ClockValue, new_command_type: StatefulCommand) { match &new_command_type { // Reset is only allowed after a power cycle. StatefulCommand::Reset => unreachable!(), _ => { self.permission = TimedPermission::granted(now, STATEFUL_COMMAND_TIMEOUT_DURATION); self.command_type = Some(new_command_type); } } } /// Returns the state for the next assertion and advances it. /// /// The state includes all information from GetAssertion and the storage key /// to the next credential that needs to be processed. pub fn next_assertion_credential( &mut self, ) -> Result<(AssertionInput, usize), Ctap2StatusCode> { if let Some(StatefulCommand::GetAssertion(assertion_state)) = &mut self.command_type { let credential_key = assertion_state .next_credential_keys .pop() .ok_or(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED)?; Ok((assertion_state.assertion_input.clone(), credential_key)) } else { Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) } } /// Returns the index to the next RP ID for enumeration and advances it. pub fn next_enumerate_rp(&mut self) -> Result { if let Some(StatefulCommand::EnumerateRps(rp_id_index)) = &mut self.command_type { let current_index = *rp_id_index; *rp_id_index += 1; Ok(current_index) } else { Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) } } /// Returns the next storage credential key for enumeration and advances it. pub fn next_enumerate_credential(&mut self) -> Result { if let Some(StatefulCommand::EnumerateCredentials(rp_credentials)) = &mut self.command_type { rp_credentials .pop() .ok_or(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) } else { Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) } } } // This struct currently holds all state, not only the persistent memory. The persistent members are // in the persistent store field. pub struct CtapState<'a, R: Rng256, CheckUserPresence: Fn(ChannelID) -> Result<(), Ctap2StatusCode>> { rng: &'a mut R, // A function to check user presence, ultimately returning true if user presence was detected, // false otherwise. check_user_presence: CheckUserPresence, persistent_store: PersistentStore, client_pin: ClientPin, #[cfg(feature = "with_ctap1")] pub u2f_up_state: U2fUserPresenceState, // The state initializes to Reset and its timeout, and never goes back to Reset. stateful_command_permission: StatefulPermission, large_blobs: LargeBlobs, upgrade_locations: Option, } impl<'a, R, CheckUserPresence> CtapState<'a, R, CheckUserPresence> where R: Rng256, CheckUserPresence: Fn(ChannelID) -> Result<(), Ctap2StatusCode>, { pub fn new( rng: &'a mut R, check_user_presence: CheckUserPresence, now: ClockValue, ) -> CtapState<'a, R, CheckUserPresence> { let persistent_store = PersistentStore::new(rng); let client_pin = ClientPin::new(rng); CtapState { rng, check_user_presence, persistent_store, client_pin, #[cfg(feature = "with_ctap1")] u2f_up_state: U2fUserPresenceState::new( U2F_UP_PROMPT_TIMEOUT, Duration::from_ms(TOUCH_TIMEOUT_MS), ), stateful_command_permission: StatefulPermission::new_reset(now), large_blobs: LargeBlobs::new(), upgrade_locations: UpgradeLocations::new().ok(), } } pub fn update_timeouts(&mut self, now: ClockValue) { // Ignore the result, just update. let _ = self .stateful_command_permission .check_command_permission(now); self.client_pin.update_timeouts(now); } pub fn increment_global_signature_counter(&mut self) -> Result<(), Ctap2StatusCode> { if USE_SIGNATURE_COUNTER { let increment = self.rng.gen_uniform_u32x8()[0] % 8 + 1; self.persistent_store .incr_global_signature_counter(increment)?; } Ok(()) } // Returns whether CTAP1 commands are currently supported. // If alwaysUv is enabled and the authenticator does not support internal UV, // CTAP1 needs to be disabled. #[cfg(feature = "with_ctap1")] pub fn allows_ctap1(&self) -> Result { Ok(!self.persistent_store.has_always_uv()?) } // Encrypts the private key and relying party ID hash into a credential ID. Other // information, such as a user name, are not stored, because encrypted credential IDs // are used for credentials stored server-side. Also, we want the key handle to be // compatible with U2F. pub fn encrypt_key_handle( &mut self, private_key: crypto::ecdsa::SecKey, application: &[u8; 32], ) -> Result, Ctap2StatusCode> { let master_keys = self.persistent_store.master_keys()?; let aes_enc_key = crypto::aes256::EncryptionKey::new(&master_keys.encryption); let mut plaintext = [0; 64]; private_key.to_bytes(array_mut_ref!(plaintext, 0, 32)); plaintext[32..64].copy_from_slice(application); let mut encrypted_id = aes256_cbc_encrypt(self.rng, &aes_enc_key, &plaintext, true)?; let id_hmac = hmac_256::(&master_keys.hmac, &encrypted_id[..]); encrypted_id.extend(&id_hmac); Ok(encrypted_id) } // Decrypts a credential ID and writes the private key into a PublicKeyCredentialSource. // None is returned if the HMAC test fails or the relying party does not match the // decrypted relying party ID hash. pub fn decrypt_credential_source( &self, credential_id: Vec, rp_id_hash: &[u8], ) -> Result, Ctap2StatusCode> { if credential_id.len() != CREDENTIAL_ID_SIZE { return Ok(None); } let master_keys = self.persistent_store.master_keys()?; let payload_size = credential_id.len() - 32; if !verify_hmac_256::( &master_keys.hmac, &credential_id[..payload_size], array_ref![credential_id, payload_size, 32], ) { return Ok(None); } let aes_enc_key = crypto::aes256::EncryptionKey::new(&master_keys.encryption); let decrypted_id = aes256_cbc_decrypt(&aes_enc_key, &credential_id[..payload_size], true)?; if rp_id_hash != &decrypted_id[32..64] { return Ok(None); } let sk_option = crypto::ecdsa::SecKey::from_bytes(array_ref!(decrypted_id, 0, 32)); Ok(sk_option.map(|sk| PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id, private_key: sk, rp_id: String::from(""), user_handle: vec![], user_display_name: None, cred_protect_policy: None, creation_order: 0, user_name: None, user_icon: None, cred_blob: None, large_blob_key: None, })) } pub fn process_command( &mut self, command_cbor: &[u8], cid: ChannelID, now: ClockValue, ) -> Vec { let cmd = Command::deserialize(command_cbor); #[cfg(feature = "debug_ctap")] writeln!(&mut Console::new(), "Received command: {:#?}", cmd).unwrap(); match cmd { Ok(command) => { // Correct behavior between CTAP1 and CTAP2 isn't defined yet. Just a guess. #[cfg(feature = "with_ctap1")] { self.u2f_up_state = U2fUserPresenceState::new( U2F_UP_PROMPT_TIMEOUT, Duration::from_ms(TOUCH_TIMEOUT_MS), ); } match (&command, self.stateful_command_permission.get_command()) { (Command::AuthenticatorGetNextAssertion, Ok(StatefulCommand::GetAssertion(_))) | (Command::AuthenticatorReset, Ok(StatefulCommand::Reset)) // AuthenticatorGetInfo still allows Reset. | (Command::AuthenticatorGetInfo, Ok(StatefulCommand::Reset)) // AuthenticatorSelection still allows Reset. | (Command::AuthenticatorSelection, Ok(StatefulCommand::Reset)) // AuthenticatorCredentialManagement handles its subcommands later. | ( Command::AuthenticatorCredentialManagement(_), Ok(StatefulCommand::EnumerateRps(_)), ) | ( Command::AuthenticatorCredentialManagement(_), Ok(StatefulCommand::EnumerateCredentials(_)), ) => (), (_, _) => self.stateful_command_permission.clear(), } let response = match command { Command::AuthenticatorMakeCredential(params) => { self.process_make_credential(params, cid) } Command::AuthenticatorGetAssertion(params) => { self.process_get_assertion(params, cid, now) } Command::AuthenticatorGetNextAssertion => self.process_get_next_assertion(now), Command::AuthenticatorGetInfo => self.process_get_info(), Command::AuthenticatorClientPin(params) => self.client_pin.process_command( self.rng, &mut self.persistent_store, params, now, ), Command::AuthenticatorReset => self.process_reset(cid, now), Command::AuthenticatorCredentialManagement(params) => { process_credential_management( &mut self.persistent_store, &mut self.stateful_command_permission, &mut self.client_pin, params, now, ) } Command::AuthenticatorSelection => self.process_selection(cid), Command::AuthenticatorLargeBlobs(params) => self.large_blobs.process_command( &mut self.persistent_store, &mut self.client_pin, params, ), Command::AuthenticatorConfig(params) => { process_config(&mut self.persistent_store, &mut self.client_pin, params) } // Vendor specific commands Command::AuthenticatorVendorConfigure(params) => { self.process_vendor_configure(params, cid) } Command::AuthenticatorVendorUpgrade(params) => { self.process_vendor_upgrade(params) } Command::AuthenticatorVendorUpgradeInfo => self.process_vendor_upgrade_info(), }; #[cfg(feature = "debug_ctap")] writeln!(&mut Console::new(), "Sending response: {:#?}", response).unwrap(); match response { Ok(response_data) => { let mut response_vec = vec![0x00]; if let Some(value) = response_data.into() { if cbor_write(value, &mut response_vec).is_err() { response_vec = vec![Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR as u8]; } } response_vec } Err(error_code) => vec![error_code as u8], } } Err(error_code) => vec![error_code as u8], } } fn pin_uv_auth_precheck( &mut self, pin_uv_auth_param: &Option>, pin_uv_auth_protocol: Option, cid: ChannelID, ) -> Result<(), Ctap2StatusCode> { if let Some(auth_param) = &pin_uv_auth_param { // This case was added in FIDO 2.1. if auth_param.is_empty() { (self.check_user_presence)(cid)?; if self.persistent_store.pin_hash()?.is_none() { return Err(Ctap2StatusCode::CTAP2_ERR_PIN_NOT_SET); } else { return Err(Ctap2StatusCode::CTAP2_ERR_PIN_INVALID); } } pin_uv_auth_protocol.ok_or(Ctap2StatusCode::CTAP2_ERR_MISSING_PARAMETER)?; } Ok(()) } fn process_make_credential( &mut self, make_credential_params: AuthenticatorMakeCredentialParameters, cid: ChannelID, ) -> Result { let AuthenticatorMakeCredentialParameters { client_data_hash, rp, user, pub_key_cred_params, exclude_list, extensions, options, pin_uv_auth_param, pin_uv_auth_protocol, enterprise_attestation, } = make_credential_params; self.pin_uv_auth_precheck(&pin_uv_auth_param, pin_uv_auth_protocol, cid)?; if !pub_key_cred_params.contains(&ES256_CRED_PARAM) { return Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM); } let rp_id = rp.rp_id; let ep_att = if let Some(enterprise_attestation) = enterprise_attestation { let authenticator_mode = ENTERPRISE_ATTESTATION_MODE.ok_or(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)?; if !self.persistent_store.enterprise_attestation()? { return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER); } match ( EnterpriseAttestationMode::try_from(enterprise_attestation)?, authenticator_mode, ) { ( EnterpriseAttestationMode::PlatformManaged, EnterpriseAttestationMode::PlatformManaged, ) => ENTERPRISE_RP_ID_LIST.contains(&rp_id.as_str()), _ => true, } } else { false }; // MakeCredential always requires user presence. // User verification depends on the PIN auth inputs, which are checked here. // The ED flag is added later, if applicable. let has_uv = pin_uv_auth_param.is_some(); let mut flags = match pin_uv_auth_param { Some(pin_uv_auth_param) => { // This case is not mentioned in CTAP2.1, so we keep 2.0 logic. if self.persistent_store.pin_hash()?.is_none() { return Err(Ctap2StatusCode::CTAP2_ERR_PIN_NOT_SET); } self.client_pin.verify_pin_uv_auth_token( &client_data_hash, &pin_uv_auth_param, pin_uv_auth_protocol.ok_or(Ctap2StatusCode::CTAP2_ERR_MISSING_PARAMETER)?, )?; self.client_pin .has_permission(PinPermission::MakeCredential)?; self.client_pin.check_user_verified_flag()?; // Checking for the correct permissions_rp_id is specified earlier. // Error codes are identical though, so the implementation can be identical with // GetAssertion. self.client_pin.ensure_rp_id_permission(&rp_id)?; UV_FLAG } None => { if options.uv { return Err(Ctap2StatusCode::CTAP2_ERR_INVALID_OPTION); } if self.persistent_store.has_always_uv()? { return Err(Ctap2StatusCode::CTAP2_ERR_PUAT_REQUIRED); } // Corresponds to makeCredUvNotRqd set to true. if options.rk && self.persistent_store.pin_hash()?.is_some() { return Err(Ctap2StatusCode::CTAP2_ERR_PUAT_REQUIRED); } 0x00 } }; flags |= UP_FLAG | AT_FLAG; let rp_id_hash = Sha256::hash(rp_id.as_bytes()); if let Some(exclude_list) = exclude_list { for cred_desc in exclude_list { if self .persistent_store .find_credential(&rp_id, &cred_desc.key_id, !has_uv)? .is_some() || self .decrypt_credential_source(cred_desc.key_id, &rp_id_hash)? .is_some() { // Perform this check, so bad actors can't brute force exclude_list // without user interaction. let _ = (self.check_user_presence)(cid); return Err(Ctap2StatusCode::CTAP2_ERR_CREDENTIAL_EXCLUDED); } } } (self.check_user_presence)(cid)?; self.client_pin.clear_token_flags(); let mut cred_protect_policy = extensions.cred_protect; if cred_protect_policy.unwrap_or(CredentialProtectionPolicy::UserVerificationOptional) < DEFAULT_CRED_PROTECT.unwrap_or(CredentialProtectionPolicy::UserVerificationOptional) { cred_protect_policy = DEFAULT_CRED_PROTECT; } let min_pin_length = extensions.min_pin_length && self .persistent_store .min_pin_length_rp_ids()? .contains(&rp_id); // None for no input, false for invalid input, true for valid input. let has_cred_blob_output = extensions.cred_blob.is_some(); let cred_blob = extensions .cred_blob .filter(|c| options.rk && c.len() <= MAX_CRED_BLOB_LENGTH); let cred_blob_output = if has_cred_blob_output { Some(cred_blob.is_some()) } else { None }; let has_extension_output = extensions.hmac_secret || extensions.cred_protect.is_some() || min_pin_length || has_cred_blob_output; if has_extension_output { flags |= ED_FLAG }; let large_blob_key = match (options.rk, extensions.large_blob_key) { (true, Some(true)) => Some(self.rng.gen_uniform_u8x32().to_vec()), _ => None, }; let sk = crypto::ecdsa::SecKey::gensk(self.rng); let pk = sk.genpk(); let credential_id = if options.rk { let random_id = self.rng.gen_uniform_u8x32().to_vec(); let credential_source = PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id: random_id.clone(), private_key: sk.clone(), rp_id, user_handle: user.user_id, // This input is user provided, so we crop it to 64 byte for storage. // The UTF8 encoding is always preserved, so the string might end up shorter. user_display_name: user .user_display_name .map(|s| truncate_to_char_boundary(&s, 64).to_string()), cred_protect_policy, creation_order: self.persistent_store.new_creation_order()?, user_name: user .user_name .map(|s| truncate_to_char_boundary(&s, 64).to_string()), user_icon: user .user_icon .map(|s| truncate_to_char_boundary(&s, 64).to_string()), cred_blob, large_blob_key: large_blob_key.clone(), }; self.persistent_store.store_credential(credential_source)?; random_id } else { self.encrypt_key_handle(sk.clone(), &rp_id_hash)? }; let mut auth_data = self.generate_auth_data(&rp_id_hash, flags)?; auth_data.extend(&self.persistent_store.aaguid()?); // The length is fixed to 0x20 or 0x70 and fits one byte. if credential_id.len() > 0xFF { return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR); } auth_data.extend(vec![0x00, credential_id.len() as u8]); auth_data.extend(&credential_id); cbor_write(cbor::Value::from(CoseKey::from(pk)), &mut auth_data)?; if has_extension_output { let hmac_secret_output = if extensions.hmac_secret { Some(true) } else { None }; let min_pin_length_output = if min_pin_length { Some(self.persistent_store.min_pin_length()? as u64) } else { None }; let cred_protect_output = extensions.cred_protect.and(cred_protect_policy); let extensions_output = cbor_map_options! { "credBlob" => cred_blob_output, "credProtect" => cred_protect_output, "hmac-secret" => hmac_secret_output, "minPinLength" => min_pin_length_output, }; cbor_write(extensions_output, &mut auth_data)?; } let mut signature_data = auth_data.clone(); signature_data.extend(client_data_hash); let (signature, x5c) = if USE_BATCH_ATTESTATION || ep_att { let attestation_private_key = self .persistent_store .attestation_private_key()? .ok_or(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?; let attestation_key = crypto::ecdsa::SecKey::from_bytes(&attestation_private_key).unwrap(); let attestation_certificate = self .persistent_store .attestation_certificate()? .ok_or(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?; ( attestation_key.sign_rfc6979::(&signature_data), Some(vec![attestation_certificate]), ) } else { (sk.sign_rfc6979::(&signature_data), None) }; let attestation_statement = PackedAttestationStatement { alg: SignatureAlgorithm::ES256 as i64, sig: signature.to_asn1_der(), x5c, ecdaa_key_id: None, }; let ep_att = if ep_att { Some(true) } else { None }; Ok(ResponseData::AuthenticatorMakeCredential( AuthenticatorMakeCredentialResponse { fmt: String::from("packed"), auth_data, att_stmt: attestation_statement, ep_att, large_blob_key, }, )) } // Generates a different per-credential secret for each UV mode. // The computation is deterministic, and private_key expected to be unique. fn generate_cred_random( &mut self, private_key: &crypto::ecdsa::SecKey, has_uv: bool, ) -> Result<[u8; 32], Ctap2StatusCode> { let mut private_key_bytes = [0u8; 32]; private_key.to_bytes(&mut private_key_bytes); let key = self.persistent_store.cred_random_secret(has_uv)?; Ok(hmac_256::(&key, &private_key_bytes)) } // Processes the input of a get_assertion operation for a given credential // and returns the correct Get(Next)Assertion response. fn assertion_response( &mut self, mut credential: PublicKeyCredentialSource, assertion_input: AssertionInput, number_of_credentials: Option, ) -> Result { let AssertionInput { client_data_hash, mut auth_data, extensions, has_uv, } = assertion_input; // Process extensions. if extensions.hmac_secret.is_some() || extensions.cred_blob { let encrypted_output = if let Some(hmac_secret_input) = extensions.hmac_secret { let cred_random = self.generate_cred_random(&credential.private_key, has_uv)?; Some(self.client_pin.process_hmac_secret( self.rng, hmac_secret_input, &cred_random, )?) } else { None }; // This could be written more nicely with `then_some` when stable. let cred_blob = if extensions.cred_blob { Some(credential.cred_blob.unwrap_or_default()) } else { None }; let extensions_output = cbor_map_options! { "credBlob" => cred_blob, "hmac-secret" => encrypted_output, }; cbor_write(extensions_output, &mut auth_data)?; } let large_blob_key = match extensions.large_blob_key { Some(true) => credential.large_blob_key, _ => None, }; let mut signature_data = auth_data.clone(); signature_data.extend(client_data_hash); let signature = credential .private_key .sign_rfc6979::(&signature_data); let cred_desc = PublicKeyCredentialDescriptor { key_type: PublicKeyCredentialType::PublicKey, key_id: credential.credential_id, transports: None, // You can set USB as a hint here. }; // Remove user identifiable information without uv. if !has_uv { credential.user_name = None; credential.user_display_name = None; credential.user_icon = None; } let user = if !credential.user_handle.is_empty() { Some(PublicKeyCredentialUserEntity { user_id: credential.user_handle, user_name: credential.user_name, user_display_name: credential.user_display_name, user_icon: credential.user_icon, }) } else { None }; Ok(ResponseData::AuthenticatorGetAssertion( AuthenticatorGetAssertionResponse { credential: Some(cred_desc), auth_data, signature: signature.to_asn1_der(), user, number_of_credentials: number_of_credentials.map(|n| n as u64), large_blob_key, }, )) } // Returns the first applicable credential from the allow list. fn get_any_credential_from_allow_list( &mut self, allow_list: Vec, rp_id: &str, rp_id_hash: &[u8], has_uv: bool, ) -> Result, Ctap2StatusCode> { for allowed_credential in allow_list { let credential = self.persistent_store.find_credential( rp_id, &allowed_credential.key_id, !has_uv, )?; if credential.is_some() { return Ok(credential); } let credential = self.decrypt_credential_source(allowed_credential.key_id, &rp_id_hash)?; if credential.is_some() { return Ok(credential); } } Ok(None) } fn process_get_assertion( &mut self, get_assertion_params: AuthenticatorGetAssertionParameters, cid: ChannelID, now: ClockValue, ) -> Result { let AuthenticatorGetAssertionParameters { rp_id, client_data_hash, allow_list, extensions, options, pin_uv_auth_param, pin_uv_auth_protocol, } = get_assertion_params; self.pin_uv_auth_precheck(&pin_uv_auth_param, pin_uv_auth_protocol, cid)?; if extensions.hmac_secret.is_some() && !options.up { // The extension is actually supported, but we need user presence. return Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_OPTION); } // The user verification bit depends on the existance of PIN auth, since we do // not support internal UV. User presence is requested as an option. let has_uv = pin_uv_auth_param.is_some(); let mut flags = match pin_uv_auth_param { Some(pin_uv_auth_param) => { // This case is not mentioned in CTAP2.1, so we keep 2.0 logic. if self.persistent_store.pin_hash()?.is_none() { return Err(Ctap2StatusCode::CTAP2_ERR_PIN_NOT_SET); } self.client_pin.verify_pin_uv_auth_token( &client_data_hash, &pin_uv_auth_param, pin_uv_auth_protocol.ok_or(Ctap2StatusCode::CTAP2_ERR_MISSING_PARAMETER)?, )?; self.client_pin .has_permission(PinPermission::GetAssertion)?; // Checking for the UV flag is specified earlier for GetAssertion. // Error codes are identical though, so the implementation can be identical with // MakeCredential. self.client_pin.check_user_verified_flag()?; self.client_pin.ensure_rp_id_permission(&rp_id)?; UV_FLAG } None => { if options.uv { return Err(Ctap2StatusCode::CTAP2_ERR_INVALID_OPTION); } if options.up && self.persistent_store.has_always_uv()? { return Err(Ctap2StatusCode::CTAP2_ERR_PUAT_REQUIRED); } 0x00 } }; if options.up { flags |= UP_FLAG; } if extensions.hmac_secret.is_some() || extensions.cred_blob { flags |= ED_FLAG; } let rp_id_hash = Sha256::hash(rp_id.as_bytes()); let (credential, next_credential_keys) = if let Some(allow_list) = allow_list { ( self.get_any_credential_from_allow_list(allow_list, &rp_id, &rp_id_hash, has_uv)?, vec![], ) } else { let mut iter_result = Ok(()); let iter = self.persistent_store.iter_credentials(&mut iter_result)?; let mut stored_credentials: Vec<(usize, u64)> = iter .filter_map(|(key, credential)| { if credential.rp_id == rp_id && (has_uv || credential.is_discoverable()) { Some((key, credential.creation_order)) } else { None } }) .collect(); iter_result?; stored_credentials.sort_unstable_by_key(|&(_key, order)| order); let mut stored_credentials: Vec = stored_credentials .into_iter() .map(|(key, _order)| key) .collect(); let credential = stored_credentials .pop() .map(|key| self.persistent_store.get_credential(key)) .transpose()?; (credential, stored_credentials) }; let credential = credential.ok_or(Ctap2StatusCode::CTAP2_ERR_NO_CREDENTIALS)?; // This check comes before CTAP2_ERR_NO_CREDENTIALS in CTAP 2.0. if options.up { (self.check_user_presence)(cid)?; self.client_pin.clear_token_flags(); } self.increment_global_signature_counter()?; let assertion_input = AssertionInput { client_data_hash, auth_data: self.generate_auth_data(&rp_id_hash, flags)?, extensions, has_uv, }; let number_of_credentials = if next_credential_keys.is_empty() { None } else { let number_of_credentials = Some(next_credential_keys.len() + 1); let assertion_state = StatefulCommand::GetAssertion(Box::new(AssertionState { assertion_input: assertion_input.clone(), next_credential_keys, })); self.stateful_command_permission .set_command(now, assertion_state); number_of_credentials }; self.assertion_response(credential, assertion_input, number_of_credentials) } fn process_get_next_assertion( &mut self, now: ClockValue, ) -> Result { self.stateful_command_permission .check_command_permission(now)?; let (assertion_input, credential_key) = self .stateful_command_permission .next_assertion_credential()?; let credential = self.persistent_store.get_credential(credential_key)?; self.assertion_response(credential, assertion_input, None) } fn process_get_info(&self) -> Result { let has_always_uv = self.persistent_store.has_always_uv()?; #[cfg_attr(not(feature = "with_ctap1"), allow(unused_mut))] let mut versions = vec![ String::from(FIDO2_VERSION_STRING), String::from(FIDO2_1_VERSION_STRING), ]; #[cfg(feature = "with_ctap1")] { if !has_always_uv { versions.insert(0, String::from(U2F_VERSION_STRING)) } } let mut options = vec![]; if ENTERPRISE_ATTESTATION_MODE.is_some() { options.push(( String::from("ep"), self.persistent_store.enterprise_attestation()?, )); } options.append(&mut vec![ (String::from("rk"), true), (String::from("up"), true), (String::from("alwaysUv"), has_always_uv), (String::from("credMgmt"), true), (String::from("authnrCfg"), true), ( String::from("clientPin"), self.persistent_store.pin_hash()?.is_some(), ), (String::from("largeBlobs"), true), (String::from("pinUvAuthToken"), true), (String::from("setMinPINLength"), true), (String::from("makeCredUvNotRqd"), !has_always_uv), ]); Ok(ResponseData::AuthenticatorGetInfo( AuthenticatorGetInfoResponse { versions, extensions: Some(vec![ String::from("hmac-secret"), String::from("credProtect"), String::from("minPinLength"), String::from("credBlob"), String::from("largeBlobKey"), ]), aaguid: self.persistent_store.aaguid()?, options: Some(options), max_msg_size: Some(MAX_MSG_SIZE as u64), // The order implies preference. We favor the new V2. pin_protocols: Some(vec![ PinUvAuthProtocol::V2 as u64, PinUvAuthProtocol::V1 as u64, ]), max_credential_count_in_list: MAX_CREDENTIAL_COUNT_IN_LIST.map(|c| c as u64), max_credential_id_length: Some(CREDENTIAL_ID_SIZE as u64), transports: Some(vec![AuthenticatorTransport::Usb]), algorithms: Some(vec![ES256_CRED_PARAM]), max_serialized_large_blob_array: Some(MAX_LARGE_BLOB_ARRAY_SIZE as u64), force_pin_change: Some(self.persistent_store.has_force_pin_change()?), min_pin_length: self.persistent_store.min_pin_length()?, firmware_version: None, max_cred_blob_length: Some(MAX_CRED_BLOB_LENGTH as u64), max_rp_ids_for_set_min_pin_length: Some(MAX_RP_IDS_LENGTH as u64), certifications: None, remaining_discoverable_credentials: Some( self.persistent_store.remaining_credentials()? as u64, ), }, )) } fn process_reset( &mut self, cid: ChannelID, now: ClockValue, ) -> Result { self.stateful_command_permission .check_command_permission(now)?; match self.stateful_command_permission.get_command()? { StatefulCommand::Reset => (), _ => return Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED), } (self.check_user_presence)(cid)?; self.persistent_store.reset(self.rng)?; self.client_pin.reset(self.rng); #[cfg(feature = "with_ctap1")] { self.u2f_up_state = U2fUserPresenceState::new( U2F_UP_PROMPT_TIMEOUT, Duration::from_ms(TOUCH_TIMEOUT_MS), ); } Ok(ResponseData::AuthenticatorReset) } fn process_selection(&self, cid: ChannelID) -> Result { (self.check_user_presence)(cid)?; Ok(ResponseData::AuthenticatorSelection) } fn process_vendor_configure( &mut self, params: AuthenticatorVendorConfigureParameters, cid: ChannelID, ) -> Result { if params.attestation_material.is_some() || params.lockdown { (self.check_user_presence)(cid)?; } // Sanity checks let current_priv_key = self.persistent_store.attestation_private_key()?; let current_cert = self.persistent_store.attestation_certificate()?; let response = match params.attestation_material { // Only reading values. None => AuthenticatorVendorConfigureResponse { cert_programmed: current_cert.is_some(), pkey_programmed: current_priv_key.is_some(), }, // Device is already fully programmed. We don't leak information. Some(_) if current_cert.is_some() && current_priv_key.is_some() => { AuthenticatorVendorConfigureResponse { cert_programmed: true, pkey_programmed: true, } } // Device is partially or not programmed. We complete the process. Some(data) => { if let Some(current_cert) = ¤t_cert { if current_cert != &data.certificate { return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER); } } if let Some(current_priv_key) = ¤t_priv_key { if current_priv_key != &data.private_key { return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER); } } if current_cert.is_none() { self.persistent_store .set_attestation_certificate(&data.certificate)?; } if current_priv_key.is_none() { self.persistent_store .set_attestation_private_key(&data.private_key)?; } AuthenticatorVendorConfigureResponse { cert_programmed: true, pkey_programmed: true, } } }; if params.lockdown { // To avoid bricking the authenticator, we only allow lockdown // to happen if both values are programmed or if both U2F/CTAP1 and // batch attestation are disabled. #[cfg(feature = "with_ctap1")] let need_certificate = true; #[cfg(not(feature = "with_ctap1"))] let need_certificate = USE_BATCH_ATTESTATION; if (need_certificate && !(response.pkey_programmed && response.cert_programmed)) || crp::set_protection(crp::ProtectionLevel::FullyLocked).is_err() { return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR); } } Ok(ResponseData::AuthenticatorVendorConfigure(response)) } fn process_vendor_upgrade( &mut self, params: AuthenticatorVendorUpgradeParameters, ) -> Result { let AuthenticatorVendorUpgradeParameters { address, data, hash, signature, } = params; let upgrade_locations = self .upgrade_locations .as_mut() .ok_or(Ctap2StatusCode::CTAP1_ERR_INVALID_COMMAND)?; let written_slice = if let Some(address) = address { upgrade_locations .write_partition(address, &data) .map_err(|_| Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)?; upgrade_locations .read_partition(address, data.len()) .map_err(|_| Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)? } else { // Compares the hash inside the metadata to the actual hash. let upgrade_hash = parse_metadata(upgrade_locations, &data)?; // Only signed firmware images may be fully written. verify_signature(signature, key_material::UPGRADE_PUBLIC_KEY, &upgrade_hash)?; // Write the metadata page after verifying that its hash is signed. upgrade_locations .write_metadata(&data) .map_err(|_| Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)?; &upgrade_locations .read_metadata() .map_err(|_| Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)?[..data.len()] }; let written_hash = Sha256::hash(written_slice); if hash != written_hash { return Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE); } Ok(ResponseData::AuthenticatorVendorUpgrade) } fn process_vendor_upgrade_info(&self) -> Result { let upgrade_locations = self .upgrade_locations .as_ref() .ok_or(Ctap2StatusCode::CTAP1_ERR_INVALID_COMMAND)?; Ok(ResponseData::AuthenticatorVendorUpgradeInfo( AuthenticatorVendorUpgradeInfoResponse { info: upgrade_locations.partition_address() as u32, }, )) } pub fn generate_auth_data( &self, rp_id_hash: &[u8], flag_byte: u8, ) -> Result, Ctap2StatusCode> { let mut auth_data = vec![]; auth_data.extend(rp_id_hash); auth_data.push(flag_byte); // The global counter is only increased if USE_SIGNATURE_COUNTER is true. // It uses a big-endian representation. let mut signature_counter = [0u8; 4]; BigEndian::write_u32( &mut signature_counter, self.persistent_store.global_signature_counter()?, ); auth_data.extend(&signature_counter); Ok(auth_data) } } #[cfg(test)] mod test { use super::client_pin::PIN_TOKEN_LENGTH; use super::command::{AuthenticatorAttestationMaterial, AuthenticatorClientPinParameters}; use super::data_formats::{ ClientPinSubCommand, CoseKey, GetAssertionHmacSecretInput, GetAssertionOptions, MakeCredentialExtensions, MakeCredentialOptions, PinUvAuthProtocol, PublicKeyCredentialRpEntity, PublicKeyCredentialUserEntity, }; use super::pin_protocol::{authenticate_pin_uv_auth_token, PinProtocol}; use super::*; use cbor::{cbor_array, cbor_array_vec, cbor_map}; use crypto::rng256::ThreadRng256; const CLOCK_FREQUENCY_HZ: usize = 32768; const DUMMY_CLOCK_VALUE: ClockValue = ClockValue::new(0, CLOCK_FREQUENCY_HZ); // The keep-alive logic in the processing of some commands needs a channel ID to send // keep-alive packets to. // In tests where we define a dummy user-presence check that immediately returns, the channel // ID is irrelevant, so we pass this (dummy but valid) value. const DUMMY_CHANNEL_ID: ChannelID = [0x12, 0x34, 0x56, 0x78]; fn check_make_response( make_credential_response: Result, flags: u8, expected_aaguid: &[u8], expected_credential_id_size: u8, expected_extension_cbor: &[u8], ) { match make_credential_response.unwrap() { ResponseData::AuthenticatorMakeCredential(make_credential_response) => { let AuthenticatorMakeCredentialResponse { fmt, auth_data, att_stmt, ep_att, large_blob_key, } = make_credential_response; // The expected response is split to only assert the non-random parts. assert_eq!(fmt, "packed"); let mut expected_auth_data = vec![ 0xA3, 0x79, 0xA6, 0xF6, 0xEE, 0xAF, 0xB9, 0xA5, 0x5E, 0x37, 0x8C, 0x11, 0x80, 0x34, 0xE2, 0x75, 0x1E, 0x68, 0x2F, 0xAB, 0x9F, 0x2D, 0x30, 0xAB, 0x13, 0xD2, 0x12, 0x55, 0x86, 0xCE, 0x19, 0x47, flags, 0x00, 0x00, 0x00, ]; expected_auth_data.push(INITIAL_SIGNATURE_COUNTER as u8); expected_auth_data.extend(expected_aaguid); expected_auth_data.extend(&[0x00, expected_credential_id_size]); assert_eq!( auth_data[0..expected_auth_data.len()], expected_auth_data[..] ); assert_eq!( &auth_data[auth_data.len() - expected_extension_cbor.len()..auth_data.len()], expected_extension_cbor ); assert!(ep_att.is_none()); assert_eq!(att_stmt.alg, SignatureAlgorithm::ES256 as i64); assert_eq!(large_blob_key, None); } _ => panic!("Invalid response type"), } } #[test] fn test_get_info() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let info_reponse = ctap_state.process_command(&[0x04], DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE); let expected_cbor = cbor_map_options! { 0x01 => cbor_array_vec![vec![ #[cfg(feature = "with_ctap1")] String::from(U2F_VERSION_STRING), String::from(FIDO2_VERSION_STRING), String::from(FIDO2_1_VERSION_STRING), ]], 0x02 => cbor_array![ String::from("hmac-secret"), String::from("credProtect"), String::from("minPinLength"), String::from("credBlob"), String::from("largeBlobKey"), ], 0x03 => ctap_state.persistent_store.aaguid().unwrap(), 0x04 => cbor_map_options! { "ep" => ENTERPRISE_ATTESTATION_MODE.map(|_| false), "rk" => true, "up" => true, "alwaysUv" => false, "credMgmt" => true, "authnrCfg" => true, "clientPin" => false, "largeBlobs" => true, "pinUvAuthToken" => true, "setMinPINLength" => true, "makeCredUvNotRqd" => true, }, 0x05 => MAX_MSG_SIZE as u64, 0x06 => cbor_array![2, 1], 0x07 => MAX_CREDENTIAL_COUNT_IN_LIST.map(|c| c as u64), 0x08 => CREDENTIAL_ID_SIZE as u64, 0x09 => cbor_array!["usb"], 0x0A => cbor_array![ES256_CRED_PARAM], 0x0B => MAX_LARGE_BLOB_ARRAY_SIZE as u64, 0x0C => false, 0x0D => ctap_state.persistent_store.min_pin_length().unwrap() as u64, 0x0F => MAX_CRED_BLOB_LENGTH as u64, 0x10 => MAX_RP_IDS_LENGTH as u64, 0x14 => ctap_state.persistent_store.remaining_credentials().unwrap() as u64, }; let mut response_cbor = vec![0x00]; assert!(cbor_write(expected_cbor, &mut response_cbor).is_ok()); assert_eq!(info_reponse, response_cbor); } fn create_minimal_make_credential_parameters() -> AuthenticatorMakeCredentialParameters { let client_data_hash = vec![0xCD]; let rp = PublicKeyCredentialRpEntity { rp_id: String::from("example.com"), rp_name: None, rp_icon: None, }; let user = PublicKeyCredentialUserEntity { user_id: vec![0x1D], user_name: None, user_display_name: None, user_icon: None, }; let pub_key_cred_params = vec![ES256_CRED_PARAM]; let options = MakeCredentialOptions { rk: true, uv: false, }; AuthenticatorMakeCredentialParameters { client_data_hash, rp, user, pub_key_cred_params, exclude_list: None, extensions: MakeCredentialExtensions::default(), options, pin_uv_auth_param: None, pin_uv_auth_protocol: None, enterprise_attestation: None, } } fn create_make_credential_parameters_with_exclude_list( excluded_credential_id: &[u8], ) -> AuthenticatorMakeCredentialParameters { let excluded_credential_descriptor = PublicKeyCredentialDescriptor { key_type: PublicKeyCredentialType::PublicKey, key_id: excluded_credential_id.to_vec(), transports: None, }; let exclude_list = Some(vec![excluded_credential_descriptor]); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.exclude_list = exclude_list; make_credential_params } fn create_make_credential_parameters_with_cred_protect_policy( policy: CredentialProtectionPolicy, ) -> AuthenticatorMakeCredentialParameters { let extensions = MakeCredentialExtensions { cred_protect: Some(policy), ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.extensions = extensions; make_credential_params } #[test] fn test_resident_process_make_credential() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let make_credential_params = create_minimal_make_credential_parameters(); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); check_make_response( make_credential_response, 0x41, &ctap_state.persistent_store.aaguid().unwrap(), 0x20, &[], ); } #[test] fn test_non_resident_process_make_credential() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.options.rk = false; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); check_make_response( make_credential_response, 0x41, &ctap_state.persistent_store.aaguid().unwrap(), CREDENTIAL_ID_SIZE as u8, &[], ); } #[test] fn test_process_make_credential_unsupported_algorithm() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.pub_key_cred_params = vec![]; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert_eq!( make_credential_response, Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM) ); } #[test] fn test_process_make_credential_credential_excluded() { let mut rng = ThreadRng256 {}; let excluded_private_key = crypto::ecdsa::SecKey::gensk(&mut rng); let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let excluded_credential_id = vec![0x01, 0x23, 0x45, 0x67]; let make_credential_params = create_make_credential_parameters_with_exclude_list(&excluded_credential_id); let excluded_credential_source = PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id: excluded_credential_id, private_key: excluded_private_key, rp_id: String::from("example.com"), user_handle: vec![], user_display_name: None, cred_protect_policy: None, creation_order: 0, user_name: None, user_icon: None, cred_blob: None, large_blob_key: None, }; assert!(ctap_state .persistent_store .store_credential(excluded_credential_source) .is_ok()); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert_eq!( make_credential_response, Err(Ctap2StatusCode::CTAP2_ERR_CREDENTIAL_EXCLUDED) ); } #[test] fn test_process_make_credential_credential_with_cred_protect() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let test_policy = CredentialProtectionPolicy::UserVerificationOptionalWithCredentialIdList; let make_credential_params = create_make_credential_parameters_with_cred_protect_policy(test_policy); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert!(make_credential_response.is_ok()); let mut iter_result = Ok(()); let iter = ctap_state .persistent_store .iter_credentials(&mut iter_result) .unwrap(); // There is only 1 credential, so last is good enough. let (_, stored_credential) = iter.last().unwrap(); iter_result.unwrap(); let credential_id = stored_credential.credential_id; assert_eq!(stored_credential.cred_protect_policy, Some(test_policy)); let make_credential_params = create_make_credential_parameters_with_exclude_list(&credential_id); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert_eq!( make_credential_response, Err(Ctap2StatusCode::CTAP2_ERR_CREDENTIAL_EXCLUDED) ); let test_policy = CredentialProtectionPolicy::UserVerificationRequired; let make_credential_params = create_make_credential_parameters_with_cred_protect_policy(test_policy); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert!(make_credential_response.is_ok()); let mut iter_result = Ok(()); let iter = ctap_state .persistent_store .iter_credentials(&mut iter_result) .unwrap(); // There is only 1 credential, so last is good enough. let (_, stored_credential) = iter.last().unwrap(); iter_result.unwrap(); let credential_id = stored_credential.credential_id; assert_eq!(stored_credential.cred_protect_policy, Some(test_policy)); let make_credential_params = create_make_credential_parameters_with_exclude_list(&credential_id); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert!(make_credential_response.is_ok()); } #[test] fn test_process_make_credential_hmac_secret() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let extensions = MakeCredentialExtensions { hmac_secret: true, ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.options.rk = false; make_credential_params.extensions = extensions; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); let expected_extension_cbor = [ 0xA1, 0x6B, 0x68, 0x6D, 0x61, 0x63, 0x2D, 0x73, 0x65, 0x63, 0x72, 0x65, 0x74, 0xF5, ]; check_make_response( make_credential_response, 0xC1, &ctap_state.persistent_store.aaguid().unwrap(), CREDENTIAL_ID_SIZE as u8, &expected_extension_cbor, ); } #[test] fn test_process_make_credential_hmac_secret_resident_key() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let extensions = MakeCredentialExtensions { hmac_secret: true, ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.extensions = extensions; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); let expected_extension_cbor = [ 0xA1, 0x6B, 0x68, 0x6D, 0x61, 0x63, 0x2D, 0x73, 0x65, 0x63, 0x72, 0x65, 0x74, 0xF5, ]; check_make_response( make_credential_response, 0xC1, &ctap_state.persistent_store.aaguid().unwrap(), 0x20, &expected_extension_cbor, ); } #[test] fn test_process_make_credential_min_pin_length() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); // First part: The extension is ignored, since the RP ID is not on the list. let extensions = MakeCredentialExtensions { min_pin_length: true, ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.extensions = extensions; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); check_make_response( make_credential_response, 0x41, &ctap_state.persistent_store.aaguid().unwrap(), 0x20, &[], ); // Second part: The extension is used. assert_eq!( ctap_state .persistent_store .set_min_pin_length_rp_ids(vec!["example.com".to_string()]), Ok(()) ); let extensions = MakeCredentialExtensions { min_pin_length: true, ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.extensions = extensions; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); let expected_extension_cbor = [ 0xA1, 0x6C, 0x6D, 0x69, 0x6E, 0x50, 0x69, 0x6E, 0x4C, 0x65, 0x6E, 0x67, 0x74, 0x68, 0x04, ]; check_make_response( make_credential_response, 0xC1, &ctap_state.persistent_store.aaguid().unwrap(), 0x20, &expected_extension_cbor, ); } #[test] fn test_process_make_credential_cred_blob_ok() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let extensions = MakeCredentialExtensions { cred_blob: Some(vec![0xCB]), ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.extensions = extensions; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); let expected_extension_cbor = [ 0xA1, 0x68, 0x63, 0x72, 0x65, 0x64, 0x42, 0x6C, 0x6F, 0x62, 0xF5, ]; check_make_response( make_credential_response, 0xC1, &ctap_state.persistent_store.aaguid().unwrap(), 0x20, &expected_extension_cbor, ); let mut iter_result = Ok(()); let iter = ctap_state .persistent_store .iter_credentials(&mut iter_result) .unwrap(); // There is only 1 credential, so last is good enough. let (_, stored_credential) = iter.last().unwrap(); iter_result.unwrap(); assert_eq!(stored_credential.cred_blob, Some(vec![0xCB])); } #[test] fn test_process_make_credential_cred_blob_too_big() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let extensions = MakeCredentialExtensions { cred_blob: Some(vec![0xCB; MAX_CRED_BLOB_LENGTH + 1]), ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.extensions = extensions; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); let expected_extension_cbor = [ 0xA1, 0x68, 0x63, 0x72, 0x65, 0x64, 0x42, 0x6C, 0x6F, 0x62, 0xF4, ]; check_make_response( make_credential_response, 0xC1, &ctap_state.persistent_store.aaguid().unwrap(), 0x20, &expected_extension_cbor, ); let mut iter_result = Ok(()); let iter = ctap_state .persistent_store .iter_credentials(&mut iter_result) .unwrap(); // There is only 1 credential, so last is good enough. let (_, stored_credential) = iter.last().unwrap(); iter_result.unwrap(); assert_eq!(stored_credential.cred_blob, None); } #[test] fn test_process_make_credential_large_blob_key() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let extensions = MakeCredentialExtensions { large_blob_key: Some(true), ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.extensions = extensions; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); let large_blob_key = match make_credential_response.unwrap() { ResponseData::AuthenticatorMakeCredential(make_credential_response) => { make_credential_response.large_blob_key.unwrap() } _ => panic!("Invalid response type"), }; assert_eq!(large_blob_key.len(), 32); let mut iter_result = Ok(()); let iter = ctap_state .persistent_store .iter_credentials(&mut iter_result) .unwrap(); // There is only 1 credential, so last is good enough. let (_, stored_credential) = iter.last().unwrap(); iter_result.unwrap(); assert_eq!(stored_credential.large_blob_key.unwrap(), large_blob_key); } fn test_helper_process_make_credential_with_pin_and_uv( pin_uv_auth_protocol: PinUvAuthProtocol, ) { let mut rng = ThreadRng256 {}; let key_agreement_key = crypto::ecdh::SecKey::gensk(&mut rng); let pin_uv_auth_token = [0x91; PIN_TOKEN_LENGTH]; let client_pin = ClientPin::new_test(key_agreement_key, pin_uv_auth_token, pin_uv_auth_protocol); let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); ctap_state.client_pin = client_pin; ctap_state.persistent_store.set_pin(&[0x88; 16], 4).unwrap(); let client_data_hash = [0xCD]; let pin_uv_auth_param = authenticate_pin_uv_auth_token( &pin_uv_auth_token, &client_data_hash, pin_uv_auth_protocol, ); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.options.uv = true; make_credential_params.pin_uv_auth_param = Some(pin_uv_auth_param); make_credential_params.pin_uv_auth_protocol = Some(pin_uv_auth_protocol); let make_credential_response = ctap_state.process_make_credential(make_credential_params.clone(), DUMMY_CHANNEL_ID); check_make_response( make_credential_response, 0x45, &ctap_state.persistent_store.aaguid().unwrap(), 0x20, &[], ); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert_eq!( make_credential_response, Err(Ctap2StatusCode::CTAP2_ERR_PIN_AUTH_INVALID) ) } #[test] fn test_process_make_credential_with_pin_and_uv_v1() { test_helper_process_make_credential_with_pin_and_uv(PinUvAuthProtocol::V1); } #[test] fn test_process_make_credential_with_pin_and_uv_v2() { test_helper_process_make_credential_with_pin_and_uv(PinUvAuthProtocol::V2); } #[test] fn test_non_resident_process_make_credential_with_pin() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); ctap_state.persistent_store.set_pin(&[0x88; 16], 4).unwrap(); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.options.rk = false; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); check_make_response( make_credential_response, 0x41, &ctap_state.persistent_store.aaguid().unwrap(), 0x70, &[], ); } #[test] fn test_resident_process_make_credential_with_pin() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); ctap_state.persistent_store.set_pin(&[0x88; 16], 4).unwrap(); let make_credential_params = create_minimal_make_credential_parameters(); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert_eq!( make_credential_response, Err(Ctap2StatusCode::CTAP2_ERR_PUAT_REQUIRED) ); } #[test] fn test_process_make_credential_with_pin_always_uv() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); ctap_state.persistent_store.toggle_always_uv().unwrap(); let make_credential_params = create_minimal_make_credential_parameters(); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert_eq!( make_credential_response, Err(Ctap2StatusCode::CTAP2_ERR_PUAT_REQUIRED) ); ctap_state.persistent_store.set_pin(&[0x88; 16], 4).unwrap(); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.pin_uv_auth_param = Some(vec![0xA4; 16]); make_credential_params.pin_uv_auth_protocol = Some(PinUvAuthProtocol::V1); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert_eq!( make_credential_response, Err(Ctap2StatusCode::CTAP2_ERR_PIN_AUTH_INVALID) ); } #[test] fn test_process_make_credential_cancelled() { let mut rng = ThreadRng256 {}; let user_presence_always_cancel = |_| Err(Ctap2StatusCode::CTAP2_ERR_KEEPALIVE_CANCEL); let mut ctap_state = CtapState::new(&mut rng, user_presence_always_cancel, DUMMY_CLOCK_VALUE); let make_credential_params = create_minimal_make_credential_parameters(); let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert_eq!( make_credential_response, Err(Ctap2StatusCode::CTAP2_ERR_KEEPALIVE_CANCEL) ); } fn check_assertion_response_with_user( response: Result, expected_user: PublicKeyCredentialUserEntity, flags: u8, signature_counter: u32, expected_number_of_credentials: Option, expected_extension_cbor: &[u8], ) { match response.unwrap() { ResponseData::AuthenticatorGetAssertion(get_assertion_response) => { let AuthenticatorGetAssertionResponse { auth_data, user, number_of_credentials, .. } = get_assertion_response; let mut expected_auth_data = vec![ 0xA3, 0x79, 0xA6, 0xF6, 0xEE, 0xAF, 0xB9, 0xA5, 0x5E, 0x37, 0x8C, 0x11, 0x80, 0x34, 0xE2, 0x75, 0x1E, 0x68, 0x2F, 0xAB, 0x9F, 0x2D, 0x30, 0xAB, 0x13, 0xD2, 0x12, 0x55, 0x86, 0xCE, 0x19, 0x47, flags, 0x00, 0x00, 0x00, 0x00, ]; let signature_counter_position = expected_auth_data.len() - 4; BigEndian::write_u32( &mut expected_auth_data[signature_counter_position..], signature_counter, ); expected_auth_data.extend(expected_extension_cbor); assert_eq!(auth_data, expected_auth_data); assert_eq!(user, Some(expected_user)); assert_eq!(number_of_credentials, expected_number_of_credentials); } _ => panic!("Invalid response type"), } } fn check_assertion_response_with_extension( response: Result, expected_user_id: Vec, signature_counter: u32, expected_number_of_credentials: Option, expected_extension_cbor: &[u8], ) { let expected_user = PublicKeyCredentialUserEntity { user_id: expected_user_id, user_name: None, user_display_name: None, user_icon: None, }; check_assertion_response_with_user( response, expected_user, 0x80, signature_counter, expected_number_of_credentials, expected_extension_cbor, ); } fn check_assertion_response( response: Result, expected_user_id: Vec, signature_counter: u32, expected_number_of_credentials: Option, ) { let expected_user = PublicKeyCredentialUserEntity { user_id: expected_user_id, user_name: None, user_display_name: None, user_icon: None, }; check_assertion_response_with_user( response, expected_user, 0x00, signature_counter, expected_number_of_credentials, &[], ); } #[test] fn test_resident_process_get_assertion() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let make_credential_params = create_minimal_make_credential_parameters(); assert!(ctap_state .process_make_credential(make_credential_params, DUMMY_CHANNEL_ID) .is_ok()); let get_assertion_params = AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash: vec![0xCD], allow_list: None, extensions: GetAssertionExtensions::default(), options: GetAssertionOptions { up: false, uv: false, }, pin_uv_auth_param: None, pin_uv_auth_protocol: None, }; let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); let signature_counter = ctap_state .persistent_store .global_signature_counter() .unwrap(); check_assertion_response(get_assertion_response, vec![0x1D], signature_counter, None); } fn get_assertion_hmac_secret_params( key_agreement_key: crypto::ecdh::SecKey, key_agreement_response: ResponseData, credential_id: Option>, pin_uv_auth_protocol: PinUvAuthProtocol, ) -> AuthenticatorGetAssertionParameters { let mut rng = ThreadRng256 {}; let platform_public_key = key_agreement_key.genpk(); let public_key = match key_agreement_response { ResponseData::AuthenticatorClientPin(Some(client_pin_response)) => { client_pin_response.key_agreement.unwrap() } _ => panic!("Invalid response type"), }; let pin_protocol = PinProtocol::new_test(key_agreement_key, [0x91; 32]); let shared_secret = pin_protocol .decapsulate(public_key, pin_uv_auth_protocol) .unwrap(); let salt = vec![0x01; 32]; let salt_enc = shared_secret.as_ref().encrypt(&mut rng, &salt).unwrap(); let salt_auth = shared_secret.authenticate(&salt_enc); let hmac_secret_input = GetAssertionHmacSecretInput { key_agreement: CoseKey::from(platform_public_key), salt_enc, salt_auth, pin_uv_auth_protocol, }; let get_extensions = GetAssertionExtensions { hmac_secret: Some(hmac_secret_input), ..Default::default() }; let credential_descriptor = credential_id.map(|key_id| PublicKeyCredentialDescriptor { key_type: PublicKeyCredentialType::PublicKey, key_id, transports: None, }); let allow_list = credential_descriptor.map(|c| vec![c]); AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash: vec![0xCD], allow_list, extensions: get_extensions, options: GetAssertionOptions { up: true, uv: false, }, pin_uv_auth_param: None, pin_uv_auth_protocol: None, } } fn test_helper_process_get_assertion_hmac_secret(pin_uv_auth_protocol: PinUvAuthProtocol) { let mut rng = ThreadRng256 {}; let key_agreement_key = crypto::ecdh::SecKey::gensk(&mut rng); let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let make_extensions = MakeCredentialExtensions { hmac_secret: true, ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.options.rk = false; make_credential_params.extensions = make_extensions; let make_credential_response = ctap_state.process_make_credential(make_credential_params, DUMMY_CHANNEL_ID); assert!(make_credential_response.is_ok()); let credential_id = match make_credential_response.unwrap() { ResponseData::AuthenticatorMakeCredential(make_credential_response) => { let auth_data = make_credential_response.auth_data; let offset = 37 + ctap_state.persistent_store.aaguid().unwrap().len(); assert_eq!(auth_data[offset], 0x00); assert_eq!(auth_data[offset + 1] as usize, CREDENTIAL_ID_SIZE); auth_data[offset + 2..offset + 2 + CREDENTIAL_ID_SIZE].to_vec() } _ => panic!("Invalid response type"), }; let client_pin_params = AuthenticatorClientPinParameters { pin_uv_auth_protocol, sub_command: ClientPinSubCommand::GetKeyAgreement, key_agreement: None, pin_uv_auth_param: None, new_pin_enc: None, pin_hash_enc: None, permissions: None, permissions_rp_id: None, }; let key_agreement_response = ctap_state.client_pin.process_command( ctap_state.rng, &mut ctap_state.persistent_store, client_pin_params, DUMMY_CLOCK_VALUE, ); let get_assertion_params = get_assertion_hmac_secret_params( key_agreement_key, key_agreement_response.unwrap(), Some(credential_id), pin_uv_auth_protocol, ); let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); assert!(get_assertion_response.is_ok()); } #[test] fn test_process_get_assertion_hmac_secret_v1() { test_helper_process_get_assertion_hmac_secret(PinUvAuthProtocol::V1); } #[test] fn test_process_get_assertion_hmac_secret_v2() { test_helper_process_get_assertion_hmac_secret(PinUvAuthProtocol::V2); } fn test_helper_resident_process_get_assertion_hmac_secret( pin_uv_auth_protocol: PinUvAuthProtocol, ) { let mut rng = ThreadRng256 {}; let key_agreement_key = crypto::ecdh::SecKey::gensk(&mut rng); let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let make_extensions = MakeCredentialExtensions { hmac_secret: true, ..Default::default() }; let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.extensions = make_extensions; assert!(ctap_state .process_make_credential(make_credential_params, DUMMY_CHANNEL_ID) .is_ok()); let client_pin_params = AuthenticatorClientPinParameters { pin_uv_auth_protocol, sub_command: ClientPinSubCommand::GetKeyAgreement, key_agreement: None, pin_uv_auth_param: None, new_pin_enc: None, pin_hash_enc: None, permissions: None, permissions_rp_id: None, }; let key_agreement_response = ctap_state.client_pin.process_command( ctap_state.rng, &mut ctap_state.persistent_store, client_pin_params, DUMMY_CLOCK_VALUE, ); let get_assertion_params = get_assertion_hmac_secret_params( key_agreement_key, key_agreement_response.unwrap(), None, pin_uv_auth_protocol, ); let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); assert!(get_assertion_response.is_ok()); } #[test] fn test_process_resident_get_assertion_hmac_secret_v1() { test_helper_resident_process_get_assertion_hmac_secret(PinUvAuthProtocol::V1); } #[test] fn test_resident_process_get_assertion_hmac_secret_v2() { test_helper_resident_process_get_assertion_hmac_secret(PinUvAuthProtocol::V2); } #[test] fn test_resident_process_get_assertion_with_cred_protect() { let mut rng = ThreadRng256 {}; let private_key = crypto::ecdsa::SecKey::gensk(&mut rng); let credential_id = rng.gen_uniform_u8x32().to_vec(); let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let cred_desc = PublicKeyCredentialDescriptor { key_type: PublicKeyCredentialType::PublicKey, key_id: credential_id.clone(), transports: None, }; let credential = PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id: credential_id.clone(), private_key: private_key.clone(), rp_id: String::from("example.com"), user_handle: vec![0x1D], user_display_name: None, cred_protect_policy: Some( CredentialProtectionPolicy::UserVerificationOptionalWithCredentialIdList, ), creation_order: 0, user_name: None, user_icon: None, cred_blob: None, large_blob_key: None, }; assert!(ctap_state .persistent_store .store_credential(credential) .is_ok()); let get_assertion_params = AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash: vec![0xCD], allow_list: None, extensions: GetAssertionExtensions::default(), options: GetAssertionOptions { up: false, uv: false, }, pin_uv_auth_param: None, pin_uv_auth_protocol: None, }; let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); assert_eq!( get_assertion_response, Err(Ctap2StatusCode::CTAP2_ERR_NO_CREDENTIALS), ); let get_assertion_params = AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash: vec![0xCD], allow_list: Some(vec![cred_desc.clone()]), extensions: GetAssertionExtensions::default(), options: GetAssertionOptions { up: false, uv: false, }, pin_uv_auth_param: None, pin_uv_auth_protocol: None, }; let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); let signature_counter = ctap_state .persistent_store .global_signature_counter() .unwrap(); check_assertion_response(get_assertion_response, vec![0x1D], signature_counter, None); let credential = PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id, private_key, rp_id: String::from("example.com"), user_handle: vec![0x1D], user_display_name: None, cred_protect_policy: Some(CredentialProtectionPolicy::UserVerificationRequired), creation_order: 0, user_name: None, user_icon: None, cred_blob: None, large_blob_key: None, }; assert!(ctap_state .persistent_store .store_credential(credential) .is_ok()); let get_assertion_params = AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash: vec![0xCD], allow_list: Some(vec![cred_desc]), extensions: GetAssertionExtensions::default(), options: GetAssertionOptions { up: false, uv: false, }, pin_uv_auth_param: None, pin_uv_auth_protocol: None, }; let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); assert_eq!( get_assertion_response, Err(Ctap2StatusCode::CTAP2_ERR_NO_CREDENTIALS), ); } #[test] fn test_process_get_assertion_with_cred_blob() { let mut rng = ThreadRng256 {}; let private_key = crypto::ecdsa::SecKey::gensk(&mut rng); let credential_id = rng.gen_uniform_u8x32().to_vec(); let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let credential = PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id, private_key, rp_id: String::from("example.com"), user_handle: vec![0x1D], user_display_name: None, cred_protect_policy: None, creation_order: 0, user_name: None, user_icon: None, cred_blob: Some(vec![0xCB]), large_blob_key: None, }; assert!(ctap_state .persistent_store .store_credential(credential) .is_ok()); let extensions = GetAssertionExtensions { cred_blob: true, ..Default::default() }; let get_assertion_params = AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash: vec![0xCD], allow_list: None, extensions, options: GetAssertionOptions { up: false, uv: false, }, pin_uv_auth_param: None, pin_uv_auth_protocol: None, }; let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); let signature_counter = ctap_state .persistent_store .global_signature_counter() .unwrap(); let expected_extension_cbor = [ 0xA1, 0x68, 0x63, 0x72, 0x65, 0x64, 0x42, 0x6C, 0x6F, 0x62, 0x41, 0xCB, ]; check_assertion_response_with_extension( get_assertion_response, vec![0x1D], signature_counter, None, &expected_extension_cbor, ); } #[test] fn test_process_get_assertion_with_large_blob_key() { let mut rng = ThreadRng256 {}; let private_key = crypto::ecdsa::SecKey::gensk(&mut rng); let credential_id = rng.gen_uniform_u8x32().to_vec(); let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let credential = PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id, private_key, rp_id: String::from("example.com"), user_handle: vec![0x1D], user_display_name: None, cred_protect_policy: None, creation_order: 0, user_name: None, user_icon: None, cred_blob: None, large_blob_key: Some(vec![0x1C; 32]), }; assert!(ctap_state .persistent_store .store_credential(credential) .is_ok()); let extensions = GetAssertionExtensions { large_blob_key: Some(true), ..Default::default() }; let get_assertion_params = AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash: vec![0xCD], allow_list: None, extensions, options: GetAssertionOptions { up: false, uv: false, }, pin_uv_auth_param: None, pin_uv_auth_protocol: None, }; let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); let large_blob_key = match get_assertion_response.unwrap() { ResponseData::AuthenticatorGetAssertion(get_assertion_response) => { get_assertion_response.large_blob_key.unwrap() } _ => panic!("Invalid response type"), }; assert_eq!(large_blob_key, vec![0x1C; 32]); } fn test_helper_process_get_next_assertion_two_credentials_with_uv( pin_uv_auth_protocol: PinUvAuthProtocol, ) { let mut rng = ThreadRng256 {}; let key_agreement_key = crypto::ecdh::SecKey::gensk(&mut rng); let pin_uv_auth_token = [0x88; 32]; let client_pin = ClientPin::new_test(key_agreement_key, pin_uv_auth_token, pin_uv_auth_protocol); let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let mut make_credential_params = create_minimal_make_credential_parameters(); let user1 = PublicKeyCredentialUserEntity { user_id: vec![0x01], user_name: Some("user1".to_string()), user_display_name: Some("User One".to_string()), user_icon: Some("icon1".to_string()), }; make_credential_params.user = user1.clone(); assert!(ctap_state .process_make_credential(make_credential_params, DUMMY_CHANNEL_ID) .is_ok()); let mut make_credential_params = create_minimal_make_credential_parameters(); let user2 = PublicKeyCredentialUserEntity { user_id: vec![0x02], user_name: Some("user2".to_string()), user_display_name: Some("User Two".to_string()), user_icon: Some("icon2".to_string()), }; make_credential_params.user = user2.clone(); assert!(ctap_state .process_make_credential(make_credential_params, DUMMY_CHANNEL_ID) .is_ok()); ctap_state.client_pin = client_pin; // The PIN length is outside of the test scope and most likely incorrect. ctap_state.persistent_store.set_pin(&[0u8; 16], 4).unwrap(); let client_data_hash = vec![0xCD]; let pin_uv_auth_param = authenticate_pin_uv_auth_token( &pin_uv_auth_token, &client_data_hash, pin_uv_auth_protocol, ); let get_assertion_params = AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash, allow_list: None, extensions: GetAssertionExtensions::default(), options: GetAssertionOptions { up: false, uv: true, }, pin_uv_auth_param: Some(pin_uv_auth_param), pin_uv_auth_protocol: Some(pin_uv_auth_protocol), }; let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); let signature_counter = ctap_state .persistent_store .global_signature_counter() .unwrap(); check_assertion_response_with_user( get_assertion_response, user2, 0x04, signature_counter, Some(2), &[], ); let get_assertion_response = ctap_state.process_get_next_assertion(DUMMY_CLOCK_VALUE); check_assertion_response_with_user( get_assertion_response, user1, 0x04, signature_counter, None, &[], ); let get_assertion_response = ctap_state.process_get_next_assertion(DUMMY_CLOCK_VALUE); assert_eq!( get_assertion_response, Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) ); } #[test] fn test_process_get_next_assertion_two_credentials_with_uv_v1() { test_helper_process_get_next_assertion_two_credentials_with_uv(PinUvAuthProtocol::V1); } #[test] fn test_process_get_next_assertion_two_credentials_with_uv_v2() { test_helper_process_get_next_assertion_two_credentials_with_uv(PinUvAuthProtocol::V2); } #[test] fn test_process_get_next_assertion_three_credentials_no_uv() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.user.user_id = vec![0x01]; make_credential_params.user.user_name = Some("removed".to_string()); make_credential_params.user.user_display_name = Some("removed".to_string()); make_credential_params.user.user_icon = Some("removed".to_string()); assert!(ctap_state .process_make_credential(make_credential_params, DUMMY_CHANNEL_ID) .is_ok()); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.user.user_id = vec![0x02]; make_credential_params.user.user_name = Some("removed".to_string()); make_credential_params.user.user_display_name = Some("removed".to_string()); make_credential_params.user.user_icon = Some("removed".to_string()); assert!(ctap_state .process_make_credential(make_credential_params, DUMMY_CHANNEL_ID) .is_ok()); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.user.user_id = vec![0x03]; make_credential_params.user.user_name = Some("removed".to_string()); make_credential_params.user.user_display_name = Some("removed".to_string()); make_credential_params.user.user_icon = Some("removed".to_string()); assert!(ctap_state .process_make_credential(make_credential_params, DUMMY_CHANNEL_ID) .is_ok()); let get_assertion_params = AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash: vec![0xCD], allow_list: None, extensions: GetAssertionExtensions::default(), options: GetAssertionOptions { up: false, uv: false, }, pin_uv_auth_param: None, pin_uv_auth_protocol: None, }; let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); let signature_counter = ctap_state .persistent_store .global_signature_counter() .unwrap(); check_assertion_response( get_assertion_response, vec![0x03], signature_counter, Some(3), ); let get_assertion_response = ctap_state.process_get_next_assertion(DUMMY_CLOCK_VALUE); check_assertion_response(get_assertion_response, vec![0x02], signature_counter, None); let get_assertion_response = ctap_state.process_get_next_assertion(DUMMY_CLOCK_VALUE); check_assertion_response(get_assertion_response, vec![0x01], signature_counter, None); let get_assertion_response = ctap_state.process_get_next_assertion(DUMMY_CLOCK_VALUE); assert_eq!( get_assertion_response, Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) ); } #[test] fn test_process_get_next_assertion_not_allowed() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let get_assertion_response = ctap_state.process_get_next_assertion(DUMMY_CLOCK_VALUE); assert_eq!( get_assertion_response, Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) ); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.user.user_id = vec![0x01]; assert!(ctap_state .process_make_credential(make_credential_params, DUMMY_CHANNEL_ID) .is_ok()); let mut make_credential_params = create_minimal_make_credential_parameters(); make_credential_params.user.user_id = vec![0x02]; assert!(ctap_state .process_make_credential(make_credential_params, DUMMY_CHANNEL_ID) .is_ok()); let get_assertion_params = AuthenticatorGetAssertionParameters { rp_id: String::from("example.com"), client_data_hash: vec![0xCD], allow_list: None, extensions: GetAssertionExtensions::default(), options: GetAssertionOptions { up: false, uv: false, }, pin_uv_auth_param: None, pin_uv_auth_protocol: None, }; let get_assertion_response = ctap_state.process_get_assertion( get_assertion_params, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); assert!(get_assertion_response.is_ok()); // This is a MakeCredential command. let mut command_cbor = vec![0x01]; let cbor_value = cbor_map! { 1 => vec![0xCD; 16], 2 => cbor_map! { "id" => "example.com", }, 3 => cbor_map! { "id" => vec![0x1D, 0x1D, 0x1D, 0x1D], }, 4 => cbor_array![ES256_CRED_PARAM], }; assert!(cbor_write(cbor_value, &mut command_cbor).is_ok()); ctap_state.process_command(&command_cbor, DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE); let get_assertion_response = ctap_state.process_get_next_assertion(DUMMY_CLOCK_VALUE); assert_eq!( get_assertion_response, Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED) ); } #[test] fn test_process_reset() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let private_key = crypto::ecdsa::SecKey::gensk(&mut rng); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let credential_id = vec![0x01, 0x23, 0x45, 0x67]; let credential_source = PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id, private_key, rp_id: String::from("example.com"), user_handle: vec![], user_display_name: None, cred_protect_policy: None, creation_order: 0, user_name: None, user_icon: None, cred_blob: None, large_blob_key: None, }; assert!(ctap_state .persistent_store .store_credential(credential_source) .is_ok()); assert!(ctap_state.persistent_store.count_credentials().unwrap() > 0); let reset_reponse = ctap_state.process_command(&[0x07], DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE); let expected_response = vec![0x00]; assert_eq!(reset_reponse, expected_response); assert!(ctap_state.persistent_store.count_credentials().unwrap() == 0); } #[test] fn test_process_reset_cancelled() { let mut rng = ThreadRng256 {}; let user_presence_always_cancel = |_| Err(Ctap2StatusCode::CTAP2_ERR_KEEPALIVE_CANCEL); let mut ctap_state = CtapState::new(&mut rng, user_presence_always_cancel, DUMMY_CLOCK_VALUE); let reset_reponse = ctap_state.process_reset(DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE); assert_eq!( reset_reponse, Err(Ctap2StatusCode::CTAP2_ERR_KEEPALIVE_CANCEL) ); } #[test] fn test_process_reset_not_first() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); // This is a GetNextAssertion command. ctap_state.process_command(&[0x08], DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE); let reset_reponse = ctap_state.process_reset(DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE); assert_eq!(reset_reponse, Err(Ctap2StatusCode::CTAP2_ERR_NOT_ALLOWED)); } #[test] fn test_process_credential_management_unknown_subcommand() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); // The subcommand 0xEE does not exist. let reponse = ctap_state.process_command( &[0x0A, 0xA1, 0x01, 0x18, 0xEE], DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE, ); let expected_response = vec![Ctap2StatusCode::CTAP2_ERR_INVALID_SUBCOMMAND as u8]; assert_eq!(reponse, expected_response); } #[test] fn test_process_unknown_command() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); // This command does not exist. let reponse = ctap_state.process_command(&[0xDF], DUMMY_CHANNEL_ID, DUMMY_CLOCK_VALUE); let expected_response = vec![Ctap2StatusCode::CTAP1_ERR_INVALID_COMMAND as u8]; assert_eq!(reponse, expected_response); } #[test] fn test_encrypt_decrypt_credential() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let private_key = crypto::ecdsa::SecKey::gensk(&mut rng); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); // Usually, the relying party ID or its hash is provided by the client. // We are not testing the correctness of our SHA256 here, only if it is checked. let rp_id_hash = [0x55; 32]; let encrypted_id = ctap_state .encrypt_key_handle(private_key.clone(), &rp_id_hash) .unwrap(); let decrypted_source = ctap_state .decrypt_credential_source(encrypted_id, &rp_id_hash) .unwrap() .unwrap(); assert_eq!(private_key, decrypted_source.private_key); } #[test] fn test_encrypt_decrypt_bad_hmac() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let private_key = crypto::ecdsa::SecKey::gensk(&mut rng); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); // Same as above. let rp_id_hash = [0x55; 32]; let encrypted_id = ctap_state .encrypt_key_handle(private_key, &rp_id_hash) .unwrap(); for i in 0..encrypted_id.len() { let mut modified_id = encrypted_id.clone(); modified_id[i] ^= 0x01; assert!(ctap_state .decrypt_credential_source(modified_id, &rp_id_hash) .unwrap() .is_none()); } } #[test] fn test_signature_counter() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let mut last_counter = ctap_state .persistent_store .global_signature_counter() .unwrap(); assert!(last_counter > 0); for _ in 0..100 { assert!(ctap_state.increment_global_signature_counter().is_ok()); let next_counter = ctap_state .persistent_store .global_signature_counter() .unwrap(); assert!(next_counter > last_counter); last_counter = next_counter; } } #[test] fn test_vendor_configure() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); // Nothing should be configured at the beginning let response = ctap_state.process_vendor_configure( AuthenticatorVendorConfigureParameters { lockdown: false, attestation_material: None, }, DUMMY_CHANNEL_ID, ); assert_eq!( response, Ok(ResponseData::AuthenticatorVendorConfigure( AuthenticatorVendorConfigureResponse { cert_programmed: false, pkey_programmed: false, } )) ); // Inject dummy values let dummy_key = [0x41u8; key_material::ATTESTATION_PRIVATE_KEY_LENGTH]; let dummy_cert = [0xddu8; 20]; let response = ctap_state.process_vendor_configure( AuthenticatorVendorConfigureParameters { lockdown: false, attestation_material: Some(AuthenticatorAttestationMaterial { certificate: dummy_cert.to_vec(), private_key: dummy_key, }), }, DUMMY_CHANNEL_ID, ); assert_eq!( response, Ok(ResponseData::AuthenticatorVendorConfigure( AuthenticatorVendorConfigureResponse { cert_programmed: true, pkey_programmed: true, } )) ); assert_eq!( ctap_state .persistent_store .attestation_certificate() .unwrap() .unwrap(), dummy_cert ); assert_eq!( ctap_state .persistent_store .attestation_private_key() .unwrap() .unwrap(), dummy_key ); // Try to inject other dummy values and check that initial values are retained. let other_dummy_key = [0x44u8; key_material::ATTESTATION_PRIVATE_KEY_LENGTH]; let response = ctap_state.process_vendor_configure( AuthenticatorVendorConfigureParameters { lockdown: false, attestation_material: Some(AuthenticatorAttestationMaterial { certificate: dummy_cert.to_vec(), private_key: other_dummy_key, }), }, DUMMY_CHANNEL_ID, ); assert_eq!( response, Ok(ResponseData::AuthenticatorVendorConfigure( AuthenticatorVendorConfigureResponse { cert_programmed: true, pkey_programmed: true, } )) ); assert_eq!( ctap_state .persistent_store .attestation_certificate() .unwrap() .unwrap(), dummy_cert ); assert_eq!( ctap_state .persistent_store .attestation_private_key() .unwrap() .unwrap(), dummy_key ); // Now try to lock the device let response = ctap_state.process_vendor_configure( AuthenticatorVendorConfigureParameters { lockdown: true, attestation_material: None, }, DUMMY_CHANNEL_ID, ); assert_eq!( response, Ok(ResponseData::AuthenticatorVendorConfigure( AuthenticatorVendorConfigureResponse { cert_programmed: true, pkey_programmed: true, } )) ); } #[test] fn test_parse_metadata() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); // The test buffer starts fully erased with 0xFF bytes. // The compiler issues an incorrect warning. #[allow(unused_mut)] let mut upgrade_locations = ctap_state.upgrade_locations.as_mut().unwrap(); // Partition of 0x40000 bytes and 8 bytes metadata are hashed. let hashed_data = vec![0xFF; 0x40000 + 8]; let expected_hash = Sha256::hash(&hashed_data); let mut metadata = vec![0xFF; 40]; metadata[..32].copy_from_slice(&expected_hash); assert_eq!( parse_metadata(upgrade_locations, &metadata), Ok(expected_hash) ); // Any manipulation of data fails. metadata[32] = 0x88; assert_eq!( parse_metadata(upgrade_locations, &metadata), Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) ); metadata[32] = 0xFF; metadata[0] ^= 0x01; assert_eq!( parse_metadata(upgrade_locations, &metadata), Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) ); metadata[0] ^= 0x01; upgrade_locations.write_partition(0, &[0x88; 1]).unwrap(); assert_eq!( parse_metadata(upgrade_locations, &metadata), Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) ); } #[test] fn test_verify_signature() { let mut rng = ThreadRng256 {}; let private_key = crypto::ecdsa::SecKey::gensk(&mut rng); let message = [0x44; 64]; let signed_hash = Sha256::hash(&message); let signature = private_key.sign_rfc6979::(&message); let mut signature_bytes = [0; ecdsa::Signature::BYTES_LENGTH]; signature.to_bytes(&mut signature_bytes); let cose_signature = CoseSignature { algorithm: SignatureAlgorithm::ES256, bytes: signature_bytes, }; let public_key = private_key.genpk(); let mut public_key_bytes = vec![]; cbor_write( cbor::Value::from(CoseKey::from(public_key)), &mut public_key_bytes, ) .unwrap(); assert_eq!( verify_signature( Some(cose_signature.clone()), &public_key_bytes, &signed_hash ), Ok(()) ); assert_eq!( verify_signature(Some(cose_signature.clone()), &public_key_bytes, &[0x55; 32]), Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) ); public_key_bytes[0] ^= 0x01; assert_eq!( verify_signature(Some(cose_signature), &public_key_bytes, &signed_hash), Err(Ctap2StatusCode::CTAP2_ERR_INVALID_CBOR) ); public_key_bytes[0] ^= 0x01; assert_eq!( verify_signature(None, &public_key_bytes, &signed_hash), Err(Ctap2StatusCode::CTAP2_ERR_MISSING_PARAMETER) ); signature_bytes[0] ^= 0x01; let cose_signature = CoseSignature { algorithm: SignatureAlgorithm::ES256, bytes: signature_bytes, }; assert_eq!( verify_signature(Some(cose_signature), &public_key_bytes, &signed_hash), Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) ); } #[test] fn test_vendor_upgrade() { // The test partition storage has size 0x40000. // The test metadata storage has size 0x1000. // The test identifier matches partition B. let mut rng = ThreadRng256 {}; let private_key = crypto::ecdsa::SecKey::gensk(&mut rng); let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); const METADATA_LEN: usize = 40; let data = vec![0xFF; 0x1000]; let hash = Sha256::hash(&data).to_vec(); let upgrade_locations = ctap_state.upgrade_locations.as_ref().unwrap(); let partition_length = upgrade_locations.partition_length(); let mut signed_over_data = upgrade_locations .read_partition(0, partition_length) .unwrap() .to_vec(); signed_over_data.extend(&[0xFF; METADATA_LEN - 32]); let signed_hash = Sha256::hash(&signed_over_data); let mut metadata = vec![0xFF; METADATA_LEN]; metadata[..32].copy_from_slice(&signed_hash); let metadata_hash = Sha256::hash(&metadata).to_vec(); let signature = private_key.sign_rfc6979::(&signed_over_data); let mut signature_bytes = [0; ecdsa::Signature::BYTES_LENGTH]; signature.to_bytes(&mut signature_bytes); let cose_signature = CoseSignature { algorithm: SignatureAlgorithm::ES256, bytes: signature_bytes, }; // Write to partition and metadata. let response = ctap_state.process_vendor_upgrade(AuthenticatorVendorUpgradeParameters { address: Some(0x20000), data: data.clone(), hash: hash.clone(), signature: None, }); assert_eq!(response, Ok(ResponseData::AuthenticatorVendorUpgrade)); // We can't inject a public key for our known private key, so the last upgrade step fails. // verify_signature is separately tested for that reason. let response = ctap_state.process_vendor_upgrade(AuthenticatorVendorUpgradeParameters { address: None, data: metadata.clone(), hash: metadata_hash.clone(), signature: Some(cose_signature.clone()), }); assert_eq!(response, Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)); // Write metadata of a wrong size. let response = ctap_state.process_vendor_upgrade(AuthenticatorVendorUpgradeParameters { address: None, data: metadata[..METADATA_LEN - 1].to_vec(), hash: metadata_hash, signature: Some(cose_signature), }); assert_eq!(response, Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)); // Write outside of the partition. let response = ctap_state.process_vendor_upgrade(AuthenticatorVendorUpgradeParameters { address: Some(0x40000), data: data.clone(), hash, signature: None, }); assert_eq!(response, Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)); // Write a bad hash. let response = ctap_state.process_vendor_upgrade(AuthenticatorVendorUpgradeParameters { address: Some(0x20000), data, hash: [0xEE; 32].to_vec(), signature: None, }); assert_eq!(response, Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)); } #[test] fn test_vendor_upgrade_no_second_partition() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let mut ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); ctap_state.upgrade_locations = None; let data = vec![0xFF; 0x1000]; let hash = Sha256::hash(&data).to_vec(); let response = ctap_state.process_vendor_upgrade(AuthenticatorVendorUpgradeParameters { address: Some(0), data, hash, signature: None, }); assert_eq!(response, Err(Ctap2StatusCode::CTAP1_ERR_INVALID_COMMAND)); } #[test] fn test_vendor_upgrade_info() { let mut rng = ThreadRng256 {}; let user_immediately_present = |_| Ok(()); let ctap_state = CtapState::new(&mut rng, user_immediately_present, DUMMY_CLOCK_VALUE); let partition_address = ctap_state .upgrade_locations .as_ref() .unwrap() .partition_address(); let upgrade_info_reponse = ctap_state.process_vendor_upgrade_info(); assert_eq!( upgrade_info_reponse, Ok(ResponseData::AuthenticatorVendorUpgradeInfo( AuthenticatorVendorUpgradeInfoResponse { info: partition_address as u32, } )) ); } }