Merge branch 'develop' into env_store

This commit is contained in:
Julien Cretin
2022-03-07 15:34:17 +01:00
13 changed files with 981 additions and 277 deletions

1
.gitignore vendored
View File

@@ -1,3 +1,4 @@
fuzz/corpus
target/ target/
Cargo.lock Cargo.lock

View File

@@ -15,6 +15,7 @@ cortex-m-rt = "*"
cortex-m-rt-macros = "*" cortex-m-rt-macros = "*"
panic-abort = "0.3.2" panic-abort = "0.3.2"
rtt-target = { version = "*", features = ["cortex-m"] } rtt-target = { version = "*", features = ["cortex-m"] }
tock-registers = { version = "0.6.0", features = ["no_std_unit_tests"] }
[profile.dev] [profile.dev]
panic = "abort" panic = "abort"

118
bootloader/src/bitfields.rs Normal file
View File

@@ -0,0 +1,118 @@
// Copyright 2020-2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use tock_registers::register_bitfields;
register_bitfields! [u32,
// Generic or shared bitfields
pub Task [
ENABLE OFFSET(0) NUMBITS(1)
],
pub Byte [
VALUE OFFSET(0) NUMBITS(8)
],
pub Busy [
/// Asserted when AES_BUSY or DES_BUSY or HASH_BUSY are asserted or when the DIN FIFO is not empty
BUSY OFFSET(0) NUMBITS(1) [
Ready = 0,
Busy = 1
]
],
// CC_CTL register bitfields
pub CryptoMode [
/// Determines the active cryptographic engine
MODE OFFSET(0) NUMBITS(5) [
Bypass = 0,
Aes = 1,
AesToHash = 2,
AesAndHash = 3,
Des = 4,
DesToHash = 5,
DesAndHash = 6,
Hash = 7,
AesMacAndBypass = 9,
AesToHashAndDout = 10
]
],
// HOST_RGF register bitfields
pub Interrupts [
/// This interrupt is asserted when all data was delivered to DIN buffer from SRAM
SRAM_TO_DIN OFFSET(4) NUMBITS(1),
/// This interrupt is asserted when all data was delivered to SRAM buffer from DOUT
DOUT_TO_SRAM OFFSET(5) NUMBITS(1),
/// This interrupt is asserted when all data was delivered to DIN buffer from memory
MEM_TO_DIN OFFSET(6) NUMBITS(1),
/// This interrupt is asserted when all data was delivered to memory buffer from DOUT
DOUT_TO_MEM OFFSET(7) NUMBITS(1),
AXI_ERROR OFFSET(8) NUMBITS(1),
/// The PKA end of operation interrupt status
PKA_EXP OFFSET(9) NUMBITS(1),
/// The RNG interrupt status
RNG OFFSET(10) NUMBITS(1),
/// The GPR interrupt status
SYM_DMA_COMPLETED OFFSET(11) NUMBITS(1)
],
pub RgfEndianness [
/// DOUT write endianness
DOUT_WR_BG OFFSET(3) NUMBITS(1) [
LittleEndian = 0,
BigEndian = 1
],
/// DIN write endianness
DIN_RD_BG OFFSET(7) NUMBITS(1) [
LittleEndian = 0,
BigEndian = 1
],
/// DOUT write word endianness
DOUT_WR_WBG OFFSET(11) NUMBITS(1) [
LittleEndian = 0,
BigEndian = 1
],
/// DIN write word endianness
DIN_RD_WBG OFFSET(15) NUMBITS(1) [
LittleEndian = 0,
BigEndian = 1
]
],
// DIN and DOUT register bitfields
pub LliWord1 [
/// Total number of bytes to read using DMA in this entry
BYTES_NUM OFFSET(0) NUMBITS(30),
/// Indicates the first LLI entry
FIRST OFFSET(30) NUMBITS(1),
/// Indicates the last LLI entry
LAST OFFSET(31) NUMBITS(1)
],
pub HashControl [
// bit 2 is reserved but to simplify the logic we include it in the bitfield.
MODE OFFSET(0) NUMBITS(4) [
MD5 = 0,
SHA1 = 1,
SHA256 = 2,
SHA224 = 10
]
],
pub PaddingConfig [
/// Enable Padding generation. must be reset upon completion of padding.
DO_PAD OFFSET(2) NUMBITS(1)
]
];

View File

@@ -0,0 +1,283 @@
// Copyright 2019-2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! CryptoCell 310
//!
//! Author
//! -------------------
//!
//! * Author: Jean-Michel Picod <jmichel@google.com>
//! * Date: October 1 2019
use super::bitfields;
use super::registers::{CryptoCellRegisters, NordicCC310Registers};
use super::static_ref::StaticRef;
use core::cell::Cell;
#[cfg(debug_assertions)]
use rtt_target::rprintln;
const SHA256_INIT_VALUE: [u32; 8] = [
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
];
#[derive(Copy, Clone)]
enum DigestAlgorithm {
Sha256 = 2,
}
#[derive(Copy, Clone)]
enum OperationMode {
Idle,
Hash,
}
pub struct CryptoCell310 {
registers: StaticRef<CryptoCellRegisters>,
power: StaticRef<NordicCC310Registers>,
current_op: Cell<OperationMode>,
hash_ctx: Cell<[u32; 8]>,
hash_total_size: Cell<u64>,
}
const CC310_BASE: StaticRef<CryptoCellRegisters> =
unsafe { StaticRef::new(0x5002B000 as *const CryptoCellRegisters) };
const CC310_POWER: StaticRef<NordicCC310Registers> =
unsafe { StaticRef::new(0x5002A500 as *const NordicCC310Registers) };
// Identification "signature" for CryptoCell. According to the documentation, the value
// held by this register is a fixed value, used by Host driver to verify CryptoCell presence
// at this address.
// This value was read from a CryptoCell-310 on a nRF52840-dongle kit.
const CC310_SIGNATURE: u32 = 0x20E00000;
impl CryptoCell310 {
/// Creates a new instance of cryptocell state.
pub const fn new() -> Self {
CryptoCell310 {
registers: CC310_BASE,
power: CC310_POWER,
current_op: Cell::new(OperationMode::Idle),
hash_ctx: Cell::new(SHA256_INIT_VALUE),
hash_total_size: Cell::new(0),
}
}
fn enable(&self) {
self.power.enable.write(bitfields::Task::ENABLE::SET);
for _i in 1..10 {
let read_signature = self.registers.host_rgf.signature.get();
if read_signature != CC310_SIGNATURE {
#[cfg(debug_assertions)]
rprintln!(
"[loop {}] Invalid CC310 signature. Expected {}, got {}\n",
_i,
CC310_SIGNATURE,
read_signature
);
} else {
break;
}
}
if self.registers.host_rgf.signature.get() != CC310_SIGNATURE {
panic!("Failed to initialize CC310");
}
// Make sure everything is set to little endian
self.registers.host_rgf.endian.write(
bitfields::RgfEndianness::DOUT_WR_BG::LittleEndian
+ bitfields::RgfEndianness::DIN_RD_BG::LittleEndian
+ bitfields::RgfEndianness::DOUT_WR_WBG::LittleEndian
+ bitfields::RgfEndianness::DIN_RD_WBG::LittleEndian,
);
// Always start the clock for DMA engine. It's too hard to keep
// track of which submodule needs DMA otherwise.
self.registers
.misc
.dma_clk_enable
.write(bitfields::Task::ENABLE::SET);
self.registers.host_rgf.interrupt_mask.write(
bitfields::Interrupts::SRAM_TO_DIN::CLEAR
+ bitfields::Interrupts::DOUT_TO_SRAM::CLEAR
+ bitfields::Interrupts::MEM_TO_DIN::CLEAR
+ bitfields::Interrupts::DOUT_TO_MEM::CLEAR
+ bitfields::Interrupts::AXI_ERROR::SET
+ bitfields::Interrupts::PKA_EXP::SET
+ bitfields::Interrupts::RNG::SET
+ bitfields::Interrupts::SYM_DMA_COMPLETED::CLEAR,
);
}
fn disable(&self) {
self.registers.host_rgf.interrupt_mask.set(0);
self.power.enable.write(bitfields::Task::ENABLE::CLEAR);
self.registers
.misc
.dma_clk_enable
.write(bitfields::Task::ENABLE::CLEAR);
}
fn clear_data(&self) {
let mut ctx = self.hash_ctx.get();
ctx.iter_mut().for_each(|b| *b = 0);
self.hash_ctx.set(ctx);
self.hash_total_size.set(0);
}
/// Adds data to the current hash computation.
///
/// You have to know in advance if is this is going to be the last block, and indicate that
/// correctly. Sizes of chunks before the last need to be multiples of 64.
pub fn update(&self, data: &[u8], is_last_block: bool) {
// Start CryptoCell
self.enable();
while self.registers.ctrl.hash_busy.is_set(bitfields::Busy::BUSY) {}
while self
.registers
.ctrl
.crypto_busy
.is_set(bitfields::Busy::BUSY)
{}
while self
.registers
.din
.mem_dma_busy
.is_set(bitfields::Busy::BUSY)
{}
// Start HASH module and configure it
self.current_op.set(OperationMode::Hash);
self.registers
.misc
.hash_clk_enable
.write(bitfields::Task::ENABLE::SET);
self.registers
.ctrl
.crypto_ctl
.write(bitfields::CryptoMode::MODE::Hash);
self.registers
.hash
.padding
.write(bitfields::Task::ENABLE::SET);
let size = self.hash_total_size.get();
self.registers.hash.hash_len_lsb.set(size as u32);
self.registers
.hash
.hash_len_msb
.set(size.wrapping_shr(32) as u32);
self.registers
.hash
.control
.set(DigestAlgorithm::Sha256 as u32);
// Digest must be set backwards because writing to HASH[0]
// starts computation
let mut digest = self.hash_ctx.get();
for i in (0..digest.len()).rev() {
self.registers.hash.hash[i].set(digest[i]);
}
while self.registers.ctrl.hash_busy.is_set(bitfields::Busy::BUSY) {}
// Process data
if !data.is_empty() {
if is_last_block {
self.registers
.hash
.auto_hw_padding
.write(bitfields::Task::ENABLE::SET);
}
self.registers.din.src_lli_word0.set(data.as_ptr() as u32);
self.registers
.din
.src_lli_word1
.write(bitfields::LliWord1::BYTES_NUM.val(data.len() as u32));
while !self
.registers
.host_rgf
.interrupts
.is_set(bitfields::Interrupts::MEM_TO_DIN)
{}
self.registers
.host_rgf
.interrupt_clear
.write(bitfields::Interrupts::MEM_TO_DIN::SET);
} else {
// use DO_PAD to complete padding of previous operation
self.registers
.hash
.pad_config
.write(bitfields::PaddingConfig::DO_PAD::SET);
}
while self
.registers
.ctrl
.crypto_busy
.is_set(bitfields::Busy::BUSY)
{}
while self
.registers
.din
.mem_dma_busy
.is_set(bitfields::Busy::BUSY)
{}
// Update context and total size
for i in (0..digest.len()).rev() {
digest[i] = self.registers.hash.hash[i].get();
}
self.hash_ctx.set(digest);
let new_size: u64 = ((self.registers.hash.hash_len_msb.get() as u64) << 32)
+ (self.registers.hash.hash_len_lsb.get() as u64);
self.hash_total_size.set(new_size);
// Disable HASH module
self.registers
.hash
.padding
.write(bitfields::Task::ENABLE::SET);
self.registers
.hash
.auto_hw_padding
.write(bitfields::Task::ENABLE::CLEAR);
self.registers
.hash
.pad_config
.write(bitfields::PaddingConfig::DO_PAD::CLEAR);
while self
.registers
.ctrl
.crypto_busy
.is_set(bitfields::Busy::BUSY)
{}
self.registers
.misc
.hash_clk_enable
.write(bitfields::Task::ENABLE::CLEAR);
self.disable();
}
/// Clears the data for potential reuse, and returns the result.
pub fn finalize_and_clear(&self) -> [u8; 32] {
use byteorder::{BigEndian, ByteOrder};
let words = self.hash_ctx.get();
let mut bytes = [0u8; 32];
for (i, word) in words.iter().enumerate() {
BigEndian::write_u32(&mut bytes[4 * i..4 * i + 4], *word);
}
self.clear_data();
bytes
}
}

View File

@@ -1,4 +1,4 @@
// Copyright 2021 Google LLC // Copyright 2021-2022 Google LLC
// //
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
@@ -15,6 +15,11 @@
#![no_main] #![no_main]
#![no_std] #![no_std]
mod bitfields;
mod crypto_cell;
mod registers;
mod static_ref;
extern crate cortex_m; extern crate cortex_m;
extern crate cortex_m_rt as rt; extern crate cortex_m_rt as rt;
@@ -69,7 +74,7 @@ struct BootPartition {
} }
impl BootPartition { impl BootPartition {
const _FIRMWARE_LENGTH: usize = 0x00040000; const FIRMWARE_LENGTH: usize = 0x00040000;
/// Reads the metadata, returns the timestamp if all checks pass. /// Reads the metadata, returns the timestamp if all checks pass.
pub fn read_timestamp(&self) -> Result<u32, ()> { pub fn read_timestamp(&self) -> Result<u32, ()> {
@@ -93,18 +98,40 @@ impl BootPartition {
Ok(metadata.timestamp) Ok(metadata.timestamp)
} }
/// Placeholder for the SHA256 implementation. /// Computes the SHA256 of metadata information and partition data.
/// ///
/// TODO implemented in next PR /// Assumes that firmware address and length are divisible by the page size.
/// Without it, the bootloader will never boot anything. /// This is the hardware implementation on the cryptocell.
fn compute_upgrade_hash(&self, _metadata_page: &[u8]) -> [u8; 32] { #[allow(clippy::assertions_on_constants)]
[0; 32] fn compute_upgrade_hash(&self, metadata_page: &[u8]) -> [u8; 32] {
debug_assert!(self.firmware_address % PAGE_SIZE == 0);
debug_assert!(BootPartition::FIRMWARE_LENGTH % PAGE_SIZE == 0);
let cc310 = crypto_cell::CryptoCell310::new();
for page_offset in (0..BootPartition::FIRMWARE_LENGTH).step_by(PAGE_SIZE) {
let page = unsafe { read_page(self.firmware_address + page_offset) };
cc310.update(&page, false);
}
cc310.update(&metadata_page[32..Metadata::DATA_LEN], true);
cc310.finalize_and_clear()
} }
/// Jump to the firmware. /// Jump to the firmware.
pub fn boot(&self) -> ! { pub fn boot(&self) -> ! {
let address = self.firmware_address; let address = self.firmware_address;
// Clear any pending Cryptocell interrupt in NVIC
let peripherals = cortex_m::Peripherals::take().unwrap();
unsafe {
// We could only clear cryptocell interrupts, but let's clean up before booting.
// Example code to clear more specifically:
// const CC310_IRQ: u16 = 42;
// peripherals.NVIC.icpr[usize::from(CC310_IRQ / 32)].write(1 << (CC310_IRQ % 32));
peripherals.NVIC.icer[0].write(0xffff_ffff);
peripherals.NVIC.icpr[0].write(0xffff_ffff);
peripherals.NVIC.icer[1].write(0xffff_ffff);
peripherals.NVIC.icpr[1].write(0xffff_ffff);
}
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
rprintln!("Boot jump to {:08X}", address); rprintln!("Boot jump to {:08X}", address);
let address_pointer = address as *const u32; let address_pointer = address as *const u32;

139
bootloader/src/registers.rs Normal file
View File

@@ -0,0 +1,139 @@
// Copyright 2020-2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::bitfields::{
Busy, CryptoMode, HashControl, Interrupts, LliWord1, PaddingConfig, RgfEndianness, Task,
};
use tock_registers::{
register_structs,
registers::{ReadOnly, ReadWrite, WriteOnly},
};
register_structs! {
pub CryptoCellControlRegisters {
/// Defines the cryptographic flow
(0x0000 => pub crypto_ctl: WriteOnly<u32, CryptoMode::Register>),
(0x0004 => _reserved0),
/// This register is set whent the cryptographic core is busy
(0x0010 => pub crypto_busy: ReadOnly<u32, Busy::Register>),
(0x0014 => _reserved1),
/// This register is set when the Hash engine is busy
(0x001C => pub hash_busy: ReadOnly<u32, Busy::Register>),
(0x0020 => @END),
}
}
register_structs! {
pub CryptoCellDinRegisters {
(0x0000 => _reserved0),
/// Indicates whether memoty (AXI) source DMA (DIN) is busy
(0x0020 => pub mem_dma_busy: ReadOnly<u32, Busy::Register>),
(0x0024 => _reserved1),
/// This register is used in direct LLI mode - holds the location of the data source
/// in the memory (AXI)
(0x0028 => pub src_lli_word0: WriteOnly<u32>),
/// This register is used in direct LLI mode - holds the number of bytes to be read
/// from the memory (AXI).
/// Writing to this register triggers the DMA.
(0x002C => pub src_lli_word1: WriteOnly<u32, LliWord1::Register>),
(0x0030 => @END),
}
}
register_structs! {
pub CryptoCellHashRegisters {
/// Write initial hash value or read final hash value
(0x0000 => pub hash: [ReadWrite<u32>; 9]),
(0x0024 => _reserved0),
/// HW padding automatically activated by engine.
/// For the special case of ZERO bytes data vector this register should not be used! instead use HASH_PAD_CFG
(0x0044 => pub auto_hw_padding: WriteOnly<u32, Task::Register>),
(0x0048 => _reserved1),
/// Selects which HASH mode to run
(0x0180 => pub control: ReadWrite<u32, HashControl::Register>),
/// This register enables the hash hw padding.
(0x0184 => pub padding: ReadWrite<u32, Task::Register>),
/// HASH_PAD_CFG Register.
(0x0188 => pub pad_config: ReadWrite<u32, PaddingConfig::Register>),
/// This register hold the length of current hash operation
(0x018C => pub hash_len_lsb: ReadWrite<u32>),
/// This register hold the length of current hash operation
(0x0190 => pub hash_len_msb: ReadWrite<u32>),
(0x0194 => @END),
}
}
register_structs! {
pub CryptoCellHostRgfRegisters {
/// The Interrupt Request register.
/// Each bit of this register holds the interrupt status of a single interrupt source.
(0x0000 => pub interrupts: ReadOnly<u32, Interrupts::Register>),
/// The Interrupt Mask register. Each bit of this register holds the mask of a single
/// interrupt source.
(0x0004 => pub interrupt_mask: ReadWrite<u32, Interrupts::Register>),
/// Interrupt Clear Register
(0x0008 => pub interrupt_clear: WriteOnly<u32, Interrupts::Register>),
/// This register defines the endianness of the Host-accessible registers.
(0x000C => pub endian: ReadWrite<u32, RgfEndianness::Register>),
(0x0010 => _reserved0),
/// This register holds the CryptoCell product signature.
(0x0024 => pub signature: ReadOnly<u32>),
(0x0028 => @END),
}
}
register_structs! {
pub CryptoCellMiscRegisters {
(0x0000 => _reserved0),
/// The HASH clock enable register
(0x0018 => pub hash_clk_enable: ReadWrite<u32, Task::Register>),
/// The PKA clock enable register
(0x001C => _reserved1),
/// The DMA clock enable register
(0x0020 => pub dma_clk_enable: ReadWrite<u32, Task::Register>),
/// the CryptoCell clocks' status register
(0x0024 => @END),
}
}
register_structs! {
pub NordicCC310Registers {
(0x0000 => pub enable: ReadWrite<u32, Task::Register>),
(0x0004 => @END),
},
pub CryptoCellRegisters {
(0x0000 => _reserved0),
/// HASH registers
/// - Base address: 0x0640
(0x0640 => pub hash: CryptoCellHashRegisters),
(0x07D4 => _reserved1),
/// Misc registers
/// - Base address: 0x0800
(0x0800 => pub misc: CryptoCellMiscRegisters),
(0x0824 => _reserved2),
/// CryptoCell control registers
/// - Base address: 0x0900
(0x0900 => pub ctrl: CryptoCellControlRegisters),
(0x0920 => _reserved3),
/// HOST_RGF registers
/// - Base address: 0x0A00
(0x0A00 => pub host_rgf: CryptoCellHostRgfRegisters),
(0x0A28 => _reserved4),
/// DIN registers
/// - Base address: 0x0C00
(0x0C00 => pub din: CryptoCellDinRegisters),
(0x0C30 => @END),
}
}

View File

@@ -0,0 +1,46 @@
//! Wrapper type for safe pointers to static memory.
//!
//! Imported from:
//! https://github.com/tock/tock/blob/master/kernel/src/utilities/static_ref.rs
use core::ops::Deref;
/// A pointer to statically allocated mutable data such as memory mapped I/O
/// registers.
///
/// This is a simple wrapper around a raw pointer that encapsulates an unsafe
/// dereference in a safe manner. It serve the role of creating a `&'static T`
/// given a raw address and acts similarly to `extern` definitions, except
/// `StaticRef` is subject to module and crate boundaries, while `extern`
/// definitions can be imported anywhere.
#[derive(Debug)]
pub struct StaticRef<T> {
ptr: *const T,
}
impl<T> StaticRef<T> {
/// Create a new `StaticRef` from a raw pointer
///
/// ## Safety
///
/// Callers must pass in a reference to statically allocated memory which
/// does not overlap with other values.
pub const unsafe fn new(ptr: *const T) -> StaticRef<T> {
StaticRef { ptr }
}
}
impl<T> Clone for StaticRef<T> {
fn clone(&self) -> Self {
StaticRef { ptr: self.ptr }
}
}
impl<T> Copy for StaticRef<T> {}
impl<T> Deref for StaticRef<T> {
type Target = T;
fn deref(&self) -> &'static T {
unsafe { &*self.ptr }
}
}

View File

@@ -25,14 +25,12 @@ use ctap2::ctap::command::{
}; };
use ctap2::ctap::hid::receive::MessageAssembler; use ctap2::ctap::hid::receive::MessageAssembler;
use ctap2::ctap::hid::send::HidPacketIterator; use ctap2::ctap::hid::send::HidPacketIterator;
use ctap2::ctap::hid::{ChannelID, HidPacket, Message}; use ctap2::ctap::hid::{ChannelID, CtapHidCommand, HidPacket, Message};
use ctap2::env::test::TestEnv; use ctap2::env::test::TestEnv;
use ctap2::Ctap; use ctap2::Ctap;
use libtock_drivers::timer::{ClockValue, Timestamp}; use libtock_drivers::timer::{ClockValue, Timestamp};
const COMMAND_INIT: u8 = 0x06;
const CHANNEL_BROADCAST: ChannelID = [0xFF, 0xFF, 0xFF, 0xFF]; const CHANNEL_BROADCAST: ChannelID = [0xFF, 0xFF, 0xFF, 0xFF];
const PACKET_TYPE_MASK: u8 = 0x80;
const CLOCK_FREQUENCY_HZ: usize = 32768; const CLOCK_FREQUENCY_HZ: usize = 32768;
const DUMMY_TIMESTAMP: Timestamp<isize> = Timestamp::from_ms(0); const DUMMY_TIMESTAMP: Timestamp<isize> = Timestamp::from_ms(0);
@@ -53,13 +51,14 @@ fn raw_to_message(data: &[u8]) -> Message {
cid[..data.len()].copy_from_slice(data); cid[..data.len()].copy_from_slice(data);
Message { Message {
cid, cid,
cmd: 0, // Arbitrary command.
cmd: CtapHidCommand::Cbor,
payload: vec![], payload: vec![],
} }
} else { } else {
Message { Message {
cid: array_ref!(data, 0, 4).clone(), cid: array_ref!(data, 0, 4).clone(),
cmd: data[4], cmd: CtapHidCommand::from(data[4]),
payload: data[5..].to_vec(), payload: data[5..].to_vec(),
} }
} }
@@ -71,7 +70,7 @@ fn initialize(ctap: &mut Ctap<TestEnv>) -> ChannelID {
let nonce = vec![0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0]; let nonce = vec![0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0];
let message = Message { let message = Message {
cid: CHANNEL_BROADCAST, cid: CHANNEL_BROADCAST,
cmd: COMMAND_INIT, cmd: CtapHidCommand::Init,
payload: nonce, payload: nonce,
}; };
let mut assembler_reply = MessageAssembler::new(); let mut assembler_reply = MessageAssembler::new();
@@ -168,7 +167,7 @@ pub fn process_ctap_specific_type(data: &[u8], input_type: InputType) {
// Splits the given data as HID packets and reassembles it, verifying that the original input message is reconstructed. // Splits the given data as HID packets and reassembles it, verifying that the original input message is reconstructed.
pub fn split_assemble_hid_packets(data: &[u8]) { pub fn split_assemble_hid_packets(data: &[u8]) {
let mut message = raw_to_message(data); let message = raw_to_message(data);
if let Some(hid_packet_iterator) = HidPacketIterator::new(message.clone()) { if let Some(hid_packet_iterator) = HidPacketIterator::new(message.clone()) {
let mut assembler = MessageAssembler::new(); let mut assembler = MessageAssembler::new();
let packets: Vec<HidPacket> = hid_packet_iterator.collect(); let packets: Vec<HidPacket> = hid_packet_iterator.collect();
@@ -176,7 +175,6 @@ pub fn split_assemble_hid_packets(data: &[u8]) {
for packet in first_packets { for packet in first_packets {
assert_eq!(assembler.parse_packet(packet, DUMMY_TIMESTAMP), Ok(None)); assert_eq!(assembler.parse_packet(packet, DUMMY_TIMESTAMP), Ok(None));
} }
message.cmd &= !PACKET_TYPE_MASK;
assert_eq!( assert_eq!(
assembler.parse_packet(last_packet, DUMMY_TIMESTAMP), assembler.parse_packet(last_packet, DUMMY_TIMESTAMP),
Ok(Some(message)) Ok(Some(message))

View File

@@ -20,4 +20,4 @@ done_text="$(tput bold)DONE.$(tput sgr0)"
set -e set -e
# Install cargo-fuzz library. # Install cargo-fuzz library.
cargo +stable install cargo-fuzz cargo +stable install cargo-fuzz --version 0.10.2

View File

@@ -32,13 +32,50 @@ use core::fmt::Write;
use libtock_drivers::console::Console; use libtock_drivers::console::Console;
use libtock_drivers::timer::{ClockValue, Duration, Timestamp}; use libtock_drivers::timer::{ClockValue, Duration, Timestamp};
// CTAP specification (version 20190130) section 8.1
// TODO: Channel allocation, section 8.1.3?
// TODO: Transaction timeout, section 8.1.5.2
pub type HidPacket = [u8; 64]; pub type HidPacket = [u8; 64];
pub type ChannelID = [u8; 4]; pub type ChannelID = [u8; 4];
/// CTAPHID commands
///
/// See section 11.2.9. of FIDO 2.1 (2021-06-15).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum CtapHidCommand {
Ping = 0x01,
Msg = 0x03,
// Lock is optional and may be used in the future.
Lock = 0x04,
Init = 0x06,
Wink = 0x08,
Cbor = 0x10,
Cancel = 0x11,
Keepalive = 0x3B,
Error = 0x3F,
// VendorFirst and VendorLast describe a range, and are not commands themselves.
_VendorFirst = 0x40,
_VendorLast = 0x7F,
}
impl From<u8> for CtapHidCommand {
fn from(cmd: u8) -> Self {
match cmd {
x if x == CtapHidCommand::Ping as u8 => CtapHidCommand::Ping,
x if x == CtapHidCommand::Msg as u8 => CtapHidCommand::Msg,
x if x == CtapHidCommand::Lock as u8 => CtapHidCommand::Lock,
x if x == CtapHidCommand::Init as u8 => CtapHidCommand::Init,
x if x == CtapHidCommand::Wink as u8 => CtapHidCommand::Wink,
x if x == CtapHidCommand::Cbor as u8 => CtapHidCommand::Cbor,
x if x == CtapHidCommand::Cancel as u8 => CtapHidCommand::Cancel,
x if x == CtapHidCommand::Keepalive as u8 => CtapHidCommand::Keepalive,
// This includes the actual error code 0x3F. Error is not used for incoming packets in
// the specification, so we can safely reuse it for unknown bytes.
_ => CtapHidCommand::Error,
}
}
}
/// Describes the structure of a parsed HID packet.
///
/// A packet is either an Init or a Continuation packet.
pub enum ProcessedPacket<'a> { pub enum ProcessedPacket<'a> {
InitPacket { InitPacket {
cmd: u8, cmd: u8,
@@ -51,72 +88,79 @@ pub enum ProcessedPacket<'a> {
}, },
} }
// An assembled CTAPHID command. /// An assembled CTAPHID command.
#[derive(Clone, Debug, PartialEq, Eq)] #[derive(Clone, Debug, PartialEq, Eq)]
pub struct Message { pub struct Message {
// Channel ID. // Channel ID.
pub cid: ChannelID, pub cid: ChannelID,
// Command. // Command.
pub cmd: u8, pub cmd: CtapHidCommand,
// Bytes of the message. // Bytes of the message.
pub payload: Vec<u8>, pub payload: Vec<u8>,
} }
/// A keepalive packet reports the reason why a command does not finish.
#[allow(dead_code)]
pub enum KeepaliveStatus {
Processing = 0x01,
UpNeeded = 0x02,
}
/// Holds all state for receiving and sending HID packets.
///
/// This includes
/// - state from not fully processed messages,
/// - all allocated channels,
/// - information about requested winks.
///
/// The wink information can be polled to decide to i.e. blink LEDs.
///
/// To process a packet and receive the response, you can call `process_hid_packet`.
/// If you want more control, you can also do the processing in steps:
///
/// 1. `HidPacket` -> `Option<Message>`
/// 2. `Option<Message>` -> `Message`
/// 3. `Message` -> `Message`
/// 4. `Message` -> `HidPacketIterator`
///
/// These steps correspond to:
///
/// 1. `parse_packet` assembles the message and preprocesses all pure HID commands and errors.
/// 2. If you didn't receive any message or preprocessing discarded it, stop.
/// 3. `process_message` handles all protocol interactions.
/// 4. `split_message` creates packets out of the response message.
pub struct CtapHid { pub struct CtapHid {
assembler: MessageAssembler, assembler: MessageAssembler,
// The specification (version 20190130) only requires unique CIDs ; the allocation algorithm is // The specification only requires unique CIDs, the allocation algorithm is vendor specific.
// vendor specific.
// We allocate them incrementally, that is all `cid` such that 1 <= cid <= allocated_cids are // We allocate them incrementally, that is all `cid` such that 1 <= cid <= allocated_cids are
// allocated. // allocated.
// In packets, the ID encoding is Big Endian to match what is used throughout CTAP (with the // In packets, the ID encoding is Big Endian to match what is used throughout CTAP (with the
// u32::to/from_be_bytes methods). // u32::to/from_be_bytes methods).
// TODO(kaczmarczyck) We might want to limit or timeout open channels.
allocated_cids: usize, allocated_cids: usize,
pub(crate) wink_permission: TimedPermission, pub(crate) wink_permission: TimedPermission,
} }
#[allow(dead_code)]
pub enum KeepaliveStatus {
Processing,
UpNeeded,
}
#[allow(dead_code)]
// TODO(kaczmarczyck) disable the warning in the end
impl CtapHid { impl CtapHid {
// CTAP specification (version 20190130) section 8.1.3 // We implement CTAP 2.1 from 2021-06-15. Please see section
// 11.2. USB Human Interface Device (USB HID)
const CHANNEL_RESERVED: ChannelID = [0, 0, 0, 0]; const CHANNEL_RESERVED: ChannelID = [0, 0, 0, 0];
const CHANNEL_BROADCAST: ChannelID = [0xFF, 0xFF, 0xFF, 0xFF]; const CHANNEL_BROADCAST: ChannelID = [0xFF, 0xFF, 0xFF, 0xFF];
const TYPE_INIT_BIT: u8 = 0x80; const TYPE_INIT_BIT: u8 = 0x80;
const PACKET_TYPE_MASK: u8 = 0x80; const PACKET_TYPE_MASK: u8 = 0x80;
// CTAP specification (version 20190130) section 8.1.9
const COMMAND_PING: u8 = 0x01;
const COMMAND_MSG: u8 = 0x03;
const COMMAND_INIT: u8 = 0x06;
const COMMAND_CBOR: u8 = 0x10;
pub const COMMAND_CANCEL: u8 = 0x11;
const COMMAND_KEEPALIVE: u8 = 0x3B;
const COMMAND_ERROR: u8 = 0x3F;
// TODO: optional lock command
const COMMAND_LOCK: u8 = 0x04;
const COMMAND_WINK: u8 = 0x08;
const COMMAND_VENDOR_FIRST: u8 = 0x40;
const COMMAND_VENDOR_LAST: u8 = 0x7F;
// CTAP specification (version 20190130) section 8.1.9.1.6
const ERR_INVALID_CMD: u8 = 0x01; const ERR_INVALID_CMD: u8 = 0x01;
const ERR_INVALID_PAR: u8 = 0x02; const _ERR_INVALID_PAR: u8 = 0x02;
const ERR_INVALID_LEN: u8 = 0x03; const ERR_INVALID_LEN: u8 = 0x03;
const ERR_INVALID_SEQ: u8 = 0x04; const ERR_INVALID_SEQ: u8 = 0x04;
const ERR_MSG_TIMEOUT: u8 = 0x05; const ERR_MSG_TIMEOUT: u8 = 0x05;
const ERR_CHANNEL_BUSY: u8 = 0x06; const ERR_CHANNEL_BUSY: u8 = 0x06;
const ERR_LOCK_REQUIRED: u8 = 0x0A; const _ERR_LOCK_REQUIRED: u8 = 0x0A;
const ERR_INVALID_CHANNEL: u8 = 0x0B; const ERR_INVALID_CHANNEL: u8 = 0x0B;
const ERR_OTHER: u8 = 0x7F; const _ERR_OTHER: u8 = 0x7F;
// CTAP specification (version 20190130) section 8.1.9.1.3 // See section 11.2.9.1.3. CTAPHID_INIT (0x06).
const PROTOCOL_VERSION: u8 = 2; const PROTOCOL_VERSION: u8 = 2;
// The device version number is vendor-defined. // The device version number is vendor-defined.
const DEVICE_VERSION_MAJOR: u8 = 1; const DEVICE_VERSION_MAJOR: u8 = 1;
const DEVICE_VERSION_MINOR: u8 = 0; const DEVICE_VERSION_MINOR: u8 = 0;
@@ -124,6 +168,7 @@ impl CtapHid {
const CAPABILITY_WINK: u8 = 0x01; const CAPABILITY_WINK: u8 = 0x01;
const CAPABILITY_CBOR: u8 = 0x04; const CAPABILITY_CBOR: u8 = 0x04;
#[cfg(not(feature = "with_ctap1"))]
const CAPABILITY_NMSG: u8 = 0x08; const CAPABILITY_NMSG: u8 = 0x08;
// Capabilitites currently supported by this device. // Capabilitites currently supported by this device.
#[cfg(feature = "with_ctap1")] #[cfg(feature = "with_ctap1")]
@@ -136,6 +181,7 @@ impl CtapHid {
const TIMEOUT_DURATION: Duration<isize> = Duration::from_ms(100); const TIMEOUT_DURATION: Duration<isize> = Duration::from_ms(100);
const WINK_TIMEOUT_DURATION: Duration<isize> = Duration::from_ms(5000); const WINK_TIMEOUT_DURATION: Duration<isize> = Duration::from_ms(5000);
/// Creates a new idle HID state.
pub fn new() -> CtapHid { pub fn new() -> CtapHid {
CtapHid { CtapHid {
assembler: MessageAssembler::new(), assembler: MessageAssembler::new(),
@@ -144,16 +190,26 @@ impl CtapHid {
} }
} }
// Process an incoming USB HID packet, and optionally returns a list of outgoing packets to /// Parses a packet, and preprocesses some messages and errors.
// send as a reply. ///
pub fn process_hid_packet( /// The preprocessed commands are:
&mut self, /// - INIT
env: &mut impl Env, /// - CANCEL
packet: &HidPacket, /// - ERROR
clock_value: ClockValue, /// - Unknown and unexpected commands like KEEPALIVE
ctap_state: &mut CtapState, /// - LOCK is not implemented and currently treated like an unknown command
) -> HidPacketIterator { ///
// TODO: Send COMMAND_KEEPALIVE every 100ms? /// Commands that may still be processed:
/// - PING
/// - MSG
/// - WINK
/// - CBOR
///
/// You may ignore PING, it's behaving correctly by default (input == output).
/// Ignoring the others is incorrect behavior. You have to at least replace them with an error
/// message:
/// `CtapHid::error_message(message.cid, CtapHid::ERR_INVALID_CMD)`
pub fn parse_packet(&mut self, packet: &HidPacket, clock_value: ClockValue) -> Option<Message> {
match self match self
.assembler .assembler
.parse_packet(packet, Timestamp::<isize>::from_clock_value(clock_value)) .parse_packet(packet, Timestamp::<isize>::from_clock_value(clock_value))
@@ -161,72 +217,70 @@ impl CtapHid {
Ok(Some(message)) => { Ok(Some(message)) => {
#[cfg(feature = "debug_ctap")] #[cfg(feature = "debug_ctap")]
writeln!(&mut Console::new(), "Received message: {:02x?}", message).unwrap(); writeln!(&mut Console::new(), "Received message: {:02x?}", message).unwrap();
self.preprocess_message(message)
}
Ok(None) => {
// Waiting for more packets to assemble the message, nothing to send for now.
None
}
Err((cid, error)) => {
if !self.is_allocated_channel(cid)
&& error != receive::Error::UnexpectedContinuation
{
Some(CtapHid::error_message(cid, CtapHid::ERR_INVALID_CHANNEL))
} else {
match error {
receive::Error::UnexpectedChannel => {
Some(CtapHid::error_message(cid, CtapHid::ERR_CHANNEL_BUSY))
}
receive::Error::UnexpectedInit => {
// TODO: Should we send another error code in this case?
// Technically, we were expecting a sequence number and got another
// byte, although the command/seqnum bit has higher-level semantics
// than sequence numbers.
Some(CtapHid::error_message(cid, CtapHid::ERR_INVALID_SEQ))
}
receive::Error::UnexpectedContinuation => {
// CTAP specification (version 20190130) section 8.1.5.4
// Spurious continuation packets will be ignored.
None
}
receive::Error::UnexpectedSeq => {
Some(CtapHid::error_message(cid, CtapHid::ERR_INVALID_SEQ))
}
receive::Error::UnexpectedLen => {
Some(CtapHid::error_message(cid, CtapHid::ERR_INVALID_LEN))
}
receive::Error::Timeout => {
Some(CtapHid::error_message(cid, CtapHid::ERR_MSG_TIMEOUT))
}
}
}
}
}
}
/// Processes HID-only commands of a message and returns an outgoing message if necessary.
///
/// The preprocessed commands are:
/// - INIT
/// - CANCEL
/// - ERROR
/// - Unknown and unexpected commands like KEEPALIVE
/// - LOCK is not implemented and currently treated like an unknown command
fn preprocess_message(&mut self, message: Message) -> Option<Message> {
let cid = message.cid; let cid = message.cid;
if !self.has_valid_channel(&message) { if !self.has_valid_channel(&message) {
#[cfg(feature = "debug_ctap")] return Some(CtapHid::error_message(cid, CtapHid::ERR_INVALID_CHANNEL));
writeln!(&mut Console::new(), "Invalid channel: {:02x?}", cid).unwrap();
return CtapHid::error_message(cid, CtapHid::ERR_INVALID_CHANNEL);
} }
// If another command arrives, stop winking to prevent accidential button touches.
self.wink_permission = TimedPermission::waiting();
match message.cmd { match message.cmd {
// CTAP specification (version 20190130) section 8.1.9.1.1 CtapHidCommand::Msg => Some(message),
CtapHid::COMMAND_MSG => { CtapHidCommand::Cbor => Some(message),
// If we don't have CTAP1 backward compatibilty, this command is invalid. // CTAP 2.1 from 2021-06-15, section 11.2.9.1.3.
#[cfg(not(feature = "with_ctap1"))] CtapHidCommand::Init => {
return CtapHid::error_message(cid, CtapHid::ERR_INVALID_CMD);
#[cfg(feature = "with_ctap1")]
match ctap1::Ctap1Command::process_command(
env,
&message.payload,
ctap_state,
clock_value,
) {
Ok(payload) => CtapHid::ctap1_success_message(cid, &payload),
Err(ctap1_status_code) => {
CtapHid::ctap1_error_message(cid, ctap1_status_code)
}
}
}
// CTAP specification (version 20190130) section 8.1.9.1.2
CtapHid::COMMAND_CBOR => {
// CTAP specification (version 20190130) section 8.1.5.1
// Each transaction is atomic, so we process the command directly here and
// don't handle any other packet in the meantime.
// TODO: Send keep-alive packets in the meantime.
let response =
ctap_state.process_command(env, &message.payload, cid, clock_value);
if let Some(iterator) = CtapHid::split_message(Message {
cid,
cmd: CtapHid::COMMAND_CBOR,
payload: response,
}) {
iterator
} else {
// Handle the case of a payload > 7609 bytes.
// Although this shouldn't happen if the FIDO2 commands are implemented
// correctly, we reply with a vendor specific code instead of silently
// ignoring the error.
//
// The error payload that we send instead is 1 <= 7609 bytes, so it is
// safe to unwrap() the result.
CtapHid::split_message(Message {
cid,
cmd: CtapHid::COMMAND_CBOR,
payload: vec![
Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR as u8,
],
})
.unwrap()
}
}
// CTAP specification (version 20190130) section 8.1.9.1.3
CtapHid::COMMAND_INIT => {
if message.payload.len() != 8 { if message.payload.len() != 8 {
return CtapHid::error_message(cid, CtapHid::ERR_INVALID_LEN); return Some(CtapHid::error_message(cid, CtapHid::ERR_INVALID_LEN));
} }
let new_cid = if cid == CtapHid::CHANNEL_BROADCAST { let new_cid = if cid == CtapHid::CHANNEL_BROADCAST {
@@ -247,95 +301,116 @@ impl CtapHid {
payload[15] = CtapHid::DEVICE_VERSION_BUILD; payload[15] = CtapHid::DEVICE_VERSION_BUILD;
payload[16] = CtapHid::CAPABILITIES; payload[16] = CtapHid::CAPABILITIES;
// This unwrap is safe because the payload length is 17 <= 7609 bytes. Some(Message {
CtapHid::split_message(Message {
cid, cid,
cmd: CtapHid::COMMAND_INIT, cmd: CtapHidCommand::Init,
payload, payload,
}) })
.unwrap()
} }
// CTAP specification (version 20190130) section 8.1.9.1.4 // CTAP 2.1 from 2021-06-15, section 11.2.9.1.4.
CtapHid::COMMAND_PING => { CtapHidCommand::Ping => {
// Pong the same message. // Pong the same message.
// This unwrap is safe because if we could parse the incoming message, it's Some(message)
// payload length must be <= 7609 bytes.
CtapHid::split_message(message).unwrap()
} }
// CTAP specification (version 20190130) section 8.1.9.1.5 // CTAP 2.1 from 2021-06-15, section 11.2.9.1.5.
CtapHid::COMMAND_CANCEL => { CtapHidCommand::Cancel => {
// Authenticators MUST NOT reply to this message. // Authenticators MUST NOT reply to this message.
// CANCEL is handled during user presence checks in main. // CANCEL is handled during user presence checks in main.
HidPacketIterator::none() None
} }
// Optional commands CtapHidCommand::Wink => Some(message),
// CTAP specification (version 20190130) section 8.1.9.2.1
CtapHid::COMMAND_WINK => {
if !message.payload.is_empty() {
return CtapHid::error_message(cid, CtapHid::ERR_INVALID_LEN);
}
self.wink_permission =
TimedPermission::granted(clock_value, CtapHid::WINK_TIMEOUT_DURATION);
CtapHid::split_message(Message {
cid,
cmd: CtapHid::COMMAND_WINK,
payload: vec![],
})
.unwrap()
}
// CTAP specification (version 20190130) section 8.1.9.2.2
// TODO: implement LOCK
_ => { _ => {
// Unknown or unsupported command. // Unknown or unsupported command.
CtapHid::error_message(cid, CtapHid::ERR_INVALID_CMD) Some(CtapHid::error_message(cid, CtapHid::ERR_INVALID_CMD))
} }
} }
} }
Ok(None) => {
// Waiting for more packets to assemble the message, nothing to send for now. /// Processes a message's commands that affect the protocol outside HID.
HidPacketIterator::none() pub fn process_message(
&mut self,
env: &mut impl Env,
message: Message,
clock_value: ClockValue,
ctap_state: &mut CtapState,
) -> Message {
// If another command arrives, stop winking to prevent accidential button touches.
self.wink_permission = TimedPermission::waiting();
let cid = message.cid;
match message.cmd {
// CTAP 2.1 from 2021-06-15, section 11.2.9.1.1.
CtapHidCommand::Msg => {
// If we don't have CTAP1 backward compatibilty, this command is invalid.
#[cfg(not(feature = "with_ctap1"))]
return CtapHid::error_message(cid, CtapHid::ERR_INVALID_CMD);
#[cfg(feature = "with_ctap1")]
match ctap1::Ctap1Command::process_command(
env,
&message.payload,
ctap_state,
clock_value,
) {
Ok(payload) => CtapHid::ctap1_success_message(cid, &payload),
Err(ctap1_status_code) => CtapHid::ctap1_error_message(cid, ctap1_status_code),
} }
Err((cid, error)) => { }
if !self.is_allocated_channel(cid) // CTAP 2.1 from 2021-06-15, section 11.2.9.1.2.
&& error != receive::Error::UnexpectedContinuation CtapHidCommand::Cbor => {
{ // Each transaction is atomic, so we process the command directly here and
CtapHid::error_message(cid, CtapHid::ERR_INVALID_CHANNEL) // don't handle any other packet in the meantime.
// TODO: Send "Processing" type keep-alive packets in the meantime.
let response = ctap_state.process_command(env, &message.payload, cid, clock_value);
Message {
cid,
cmd: CtapHidCommand::Cbor,
payload: response,
}
}
// CTAP 2.1 from 2021-06-15, section 11.2.9.2.1.
CtapHidCommand::Wink => {
if message.payload.is_empty() {
self.wink_permission =
TimedPermission::granted(clock_value, CtapHid::WINK_TIMEOUT_DURATION);
// The response is empty like the request.
message
} else { } else {
match error {
receive::Error::UnexpectedChannel => {
CtapHid::error_message(cid, CtapHid::ERR_CHANNEL_BUSY)
}
receive::Error::UnexpectedInit => {
// TODO: Should we send another error code in this case?
// Technically, we were expecting a sequence number and got another
// byte, although the command/seqnum bit has higher-level semantics
// than sequence numbers.
CtapHid::error_message(cid, CtapHid::ERR_INVALID_SEQ)
}
receive::Error::UnexpectedContinuation => {
// CTAP specification (version 20190130) section 8.1.5.4
// Spurious continuation packets will be ignored.
HidPacketIterator::none()
}
receive::Error::UnexpectedSeq => {
CtapHid::error_message(cid, CtapHid::ERR_INVALID_SEQ)
}
receive::Error::UnexpectedLen => {
CtapHid::error_message(cid, CtapHid::ERR_INVALID_LEN) CtapHid::error_message(cid, CtapHid::ERR_INVALID_LEN)
} }
receive::Error::Timeout => { }
CtapHid::error_message(cid, CtapHid::ERR_MSG_TIMEOUT) // All other commands have already been processed, keep them as is.
} _ => message,
}
} }
} }
/// Processes an incoming USB HID packet, and returns an iterator for all outgoing packets.
pub fn process_hid_packet(
&mut self,
env: &mut impl Env,
packet: &HidPacket,
clock_value: ClockValue,
ctap_state: &mut CtapState,
) -> HidPacketIterator {
if let Some(message) = self.parse_packet(packet, clock_value) {
let processed_message = self.process_message(env, message, clock_value, ctap_state);
#[cfg(feature = "debug_ctap")]
writeln!(
&mut Console::new(),
"Sending message: {:02x?}",
processed_message
)
.unwrap();
CtapHid::split_message(processed_message)
} else {
HidPacketIterator::none()
} }
} }
fn has_valid_channel(&self, message: &Message) -> bool { fn has_valid_channel(&self, message: &Message) -> bool {
match message.cid { match message.cid {
// Only INIT commands use the broadcast channel. // Only INIT commands use the broadcast channel.
CtapHid::CHANNEL_BROADCAST => message.cmd == CtapHid::COMMAND_INIT, CtapHid::CHANNEL_BROADCAST => message.cmd == CtapHidCommand::Init,
// Check that the channel is allocated. // Check that the channel is allocated.
_ => self.is_allocated_channel(message.cid), _ => self.is_allocated_channel(message.cid),
} }
@@ -345,16 +420,15 @@ impl CtapHid {
cid != CtapHid::CHANNEL_RESERVED && u32::from_be_bytes(cid) as usize <= self.allocated_cids cid != CtapHid::CHANNEL_RESERVED && u32::from_be_bytes(cid) as usize <= self.allocated_cids
} }
fn error_message(cid: ChannelID, error_code: u8) -> HidPacketIterator { fn error_message(cid: ChannelID, error_code: u8) -> Message {
// This unwrap is safe because the payload length is 1 <= 7609 bytes. Message {
CtapHid::split_message(Message {
cid, cid,
cmd: CtapHid::COMMAND_ERROR, cmd: CtapHidCommand::Error,
payload: vec![error_code], payload: vec![error_code],
}) }
.unwrap()
} }
/// Helper function to parse a raw packet.
pub fn process_single_packet(packet: &HidPacket) -> (&ChannelID, ProcessedPacket) { pub fn process_single_packet(packet: &HidPacket) -> (&ChannelID, ProcessedPacket) {
let (cid, rest) = array_refs![packet, 4, 60]; let (cid, rest) = array_refs![packet, 4, 60];
if rest[0] & CtapHid::PACKET_TYPE_MASK != 0 { if rest[0] & CtapHid::PACKET_TYPE_MASK != 0 {
@@ -379,56 +453,65 @@ impl CtapHid {
} }
} }
fn split_message(message: Message) -> Option<HidPacketIterator> { /// Splits the message and unwraps the result.
#[cfg(feature = "debug_ctap")] ///
writeln!(&mut Console::new(), "Sending message: {:02x?}", message).unwrap(); /// Unwrapping handles the case of payload lengths > 7609 bytes. All responses are fixed
HidPacketIterator::new(message) /// length, with the exception of:
/// - PING, but here output equals the (validated) input,
/// - CBOR, where long responses are conceivable.
///
/// Long CBOR responses should not happen, but we might not catch all edge cases, like for
/// example long user names that are part of the output of an assertion. These cases should be
/// correctly handled by the CTAP implementation. It is therefore an internal error from the
/// HID perspective.
fn split_message(message: Message) -> HidPacketIterator {
let cid = message.cid;
HidPacketIterator::new(message).unwrap_or_else(|| {
// The error payload is 1 <= 7609 bytes, so unwrap() is safe.
HidPacketIterator::new(Message {
cid,
cmd: CtapHidCommand::Cbor,
payload: vec![Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR as u8],
})
.unwrap()
})
} }
/// Generates the HID response packets for a keepalive status.
pub fn keepalive(cid: ChannelID, status: KeepaliveStatus) -> HidPacketIterator { pub fn keepalive(cid: ChannelID, status: KeepaliveStatus) -> HidPacketIterator {
let status_code = match status {
KeepaliveStatus::Processing => 1,
KeepaliveStatus::UpNeeded => 2,
};
// This unwrap is safe because the payload length is 1 <= 7609 bytes. // This unwrap is safe because the payload length is 1 <= 7609 bytes.
CtapHid::split_message(Message { CtapHid::split_message(Message {
cid, cid,
cmd: CtapHid::COMMAND_KEEPALIVE, cmd: CtapHidCommand::Keepalive,
payload: vec![status_code], payload: vec![status as u8],
}) })
.unwrap()
} }
/// Returns whether a wink permission is currently granted.
pub fn should_wink(&self, now: ClockValue) -> bool { pub fn should_wink(&self, now: ClockValue) -> bool {
self.wink_permission.is_granted(now) self.wink_permission.is_granted(now)
} }
#[cfg(feature = "with_ctap1")] #[cfg(feature = "with_ctap1")]
fn ctap1_error_message( fn ctap1_error_message(cid: ChannelID, error_code: ctap1::Ctap1StatusCode) -> Message {
cid: ChannelID,
error_code: ctap1::Ctap1StatusCode,
) -> HidPacketIterator {
// This unwrap is safe because the payload length is 2 <= 7609 bytes
let code: u16 = error_code.into(); let code: u16 = error_code.into();
CtapHid::split_message(Message { Message {
cid, cid,
cmd: CtapHid::COMMAND_MSG, cmd: CtapHidCommand::Msg,
payload: code.to_be_bytes().to_vec(), payload: code.to_be_bytes().to_vec(),
}) }
.unwrap()
} }
#[cfg(feature = "with_ctap1")] #[cfg(feature = "with_ctap1")]
fn ctap1_success_message(cid: ChannelID, payload: &[u8]) -> HidPacketIterator { fn ctap1_success_message(cid: ChannelID, payload: &[u8]) -> Message {
let mut response = payload.to_vec(); let mut response = payload.to_vec();
let code: u16 = ctap1::Ctap1StatusCode::SW_SUCCESS.into(); let code: u16 = ctap1::Ctap1StatusCode::SW_SUCCESS.into();
response.extend_from_slice(&code.to_be_bytes()); response.extend_from_slice(&code.to_be_bytes());
CtapHid::split_message(Message { Message {
cid, cid,
cmd: CtapHid::COMMAND_MSG, cmd: CtapHidCommand::Msg,
payload: response, payload: response,
}) }
.unwrap()
} }
} }
@@ -478,7 +561,7 @@ mod test {
ctap_state, ctap_state,
vec![Message { vec![Message {
cid: CtapHid::CHANNEL_BROADCAST, cid: CtapHid::CHANNEL_BROADCAST,
cmd: CtapHid::COMMAND_INIT, cmd: CtapHidCommand::Init,
payload: nonce.clone(), payload: nonce.clone(),
}], }],
); );
@@ -500,7 +583,7 @@ mod test {
for payload_len in 0..7609 { for payload_len in 0..7609 {
let message = Message { let message = Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x00, cmd: CtapHidCommand::Cbor,
payload: vec![0xFF; payload_len], payload: vec![0xFF; payload_len],
}; };
@@ -552,7 +635,7 @@ mod test {
&mut ctap_state, &mut ctap_state,
vec![Message { vec![Message {
cid: CtapHid::CHANNEL_BROADCAST, cid: CtapHid::CHANNEL_BROADCAST,
cmd: CtapHid::COMMAND_INIT, cmd: CtapHidCommand::Init,
payload: vec![0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0], payload: vec![0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0],
}], }],
); );
@@ -561,7 +644,7 @@ mod test {
reply, reply,
Some(vec![Message { Some(vec![Message {
cid: CtapHid::CHANNEL_BROADCAST, cid: CtapHid::CHANNEL_BROADCAST,
cmd: CtapHid::COMMAND_INIT, cmd: CtapHidCommand::Init,
payload: vec![ payload: vec![
0x12, // Nonce 0x12, // Nonce
0x34, 0x34,
@@ -623,7 +706,7 @@ mod test {
result, result,
vec![Message { vec![Message {
cid, cid,
cmd: CtapHid::COMMAND_INIT, cmd: CtapHidCommand::Init,
payload: vec![ payload: vec![
0x12, // Nonce 0x12, // Nonce
0x34, 0x34,
@@ -660,7 +743,7 @@ mod test {
&mut ctap_state, &mut ctap_state,
vec![Message { vec![Message {
cid, cid,
cmd: CtapHid::COMMAND_PING, cmd: CtapHidCommand::Ping,
payload: vec![0x99, 0x99], payload: vec![0x99, 0x99],
}], }],
); );
@@ -669,7 +752,7 @@ mod test {
reply, reply,
Some(vec![Message { Some(vec![Message {
cid, cid,
cmd: CtapHid::COMMAND_PING, cmd: CtapHidCommand::Ping,
payload: vec![0x99, 0x99] payload: vec![0x99, 0x99]
}]) }])
); );

View File

@@ -13,7 +13,7 @@
// limitations under the License. // limitations under the License.
use super::super::customization::MAX_MSG_SIZE; use super::super::customization::MAX_MSG_SIZE;
use super::{ChannelID, CtapHid, HidPacket, Message, ProcessedPacket}; use super::{ChannelID, CtapHid, CtapHidCommand, HidPacket, Message, ProcessedPacket};
use alloc::vec::Vec; use alloc::vec::Vec;
use core::mem::swap; use core::mem::swap;
use libtock_drivers::timer::Timestamp; use libtock_drivers::timer::Timestamp;
@@ -131,7 +131,7 @@ impl MessageAssembler {
// Unexpected initialization packet. // Unexpected initialization packet.
ProcessedPacket::InitPacket { cmd, len, data } => { ProcessedPacket::InitPacket { cmd, len, data } => {
self.reset(); self.reset();
if cmd == CtapHid::COMMAND_INIT { if cmd == CtapHidCommand::Init as u8 {
self.parse_init_packet(*cid, cmd, len, data, timestamp) self.parse_init_packet(*cid, cmd, len, data, timestamp)
} else { } else {
Err((*cid, Error::UnexpectedInit)) Err((*cid, Error::UnexpectedInit))
@@ -189,7 +189,7 @@ impl MessageAssembler {
swap(&mut self.payload, &mut payload); swap(&mut self.payload, &mut payload);
Some(Message { Some(Message {
cid: self.cid, cid: self.cid,
cmd: self.cmd, cmd: CtapHidCommand::from(self.cmd),
payload, payload,
}) })
} }
@@ -225,12 +225,12 @@ mod test {
let mut assembler = MessageAssembler::new(); let mut assembler = MessageAssembler::new();
assert_eq!( assert_eq!(
assembler.parse_packet( assembler.parse_packet(
&zero_extend(&[0x12, 0x34, 0x56, 0x78, 0x80]), &zero_extend(&[0x12, 0x34, 0x56, 0x78, 0x90]),
DUMMY_TIMESTAMP DUMMY_TIMESTAMP
), ),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x00, cmd: CtapHidCommand::Cbor,
payload: vec![] payload: vec![]
})) }))
); );
@@ -241,12 +241,12 @@ mod test {
let mut assembler = MessageAssembler::new(); let mut assembler = MessageAssembler::new();
assert_eq!( assert_eq!(
assembler.parse_packet( assembler.parse_packet(
&zero_extend(&[0x12, 0x34, 0x56, 0x78, 0x80, 0x00, 0x10]), &zero_extend(&[0x12, 0x34, 0x56, 0x78, 0x90, 0x00, 0x10]),
DUMMY_TIMESTAMP DUMMY_TIMESTAMP
), ),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x00, cmd: CtapHidCommand::Cbor,
payload: vec![0x00; 0x10] payload: vec![0x00; 0x10]
})) }))
); );
@@ -260,12 +260,12 @@ mod test {
let mut assembler = MessageAssembler::new(); let mut assembler = MessageAssembler::new();
assert_eq!( assert_eq!(
assembler.parse_packet( assembler.parse_packet(
&byte_extend(&[0x12, 0x34, 0x56, 0x78, 0x80, 0x00, 0x10], 0xFF), &byte_extend(&[0x12, 0x34, 0x56, 0x78, 0x90, 0x00, 0x10], 0xFF),
DUMMY_TIMESTAMP DUMMY_TIMESTAMP
), ),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x00, cmd: CtapHidCommand::Cbor,
payload: vec![0xFF; 0x10] payload: vec![0xFF; 0x10]
})) }))
); );
@@ -288,7 +288,7 @@ mod test {
), ),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x01, cmd: CtapHidCommand::Ping,
payload: vec![0x00; 0x40] payload: vec![0x00; 0x40]
})) }))
); );
@@ -318,7 +318,7 @@ mod test {
), ),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x01, cmd: CtapHidCommand::Ping,
payload: vec![0x00; 0x80] payload: vec![0x00; 0x80]
})) }))
); );
@@ -350,7 +350,7 @@ mod test {
), ),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x01, cmd: CtapHidCommand::Ping,
payload: vec![0x00; 0x1DB9] payload: vec![0x00; 0x1DB9]
})) }))
); );
@@ -362,12 +362,15 @@ mod test {
let mut assembler = MessageAssembler::new(); let mut assembler = MessageAssembler::new();
for i in 0..10 { for i in 0..10 {
// Introduce some variability in the messages. // Introduce some variability in the messages.
let cmd = 2 * i; let cmd = CtapHidCommand::from(i + 1);
let byte = 3 * i; let byte = 3 * i;
assert_eq!( assert_eq!(
assembler.parse_packet( assembler.parse_packet(
&byte_extend(&[0x12, 0x34, 0x56, 0x78, 0x80 | cmd, 0x00, 0x80], byte), &byte_extend(
&[0x12, 0x34, 0x56, 0x78, 0x80 | cmd as u8, 0x00, 0x80],
byte
),
DUMMY_TIMESTAMP DUMMY_TIMESTAMP
), ),
Ok(None) Ok(None)
@@ -400,12 +403,12 @@ mod test {
for i in 0..10 { for i in 0..10 {
// Introduce some variability in the messages. // Introduce some variability in the messages.
let cid = 0x78 + i; let cid = 0x78 + i;
let cmd = 2 * i; let cmd = CtapHidCommand::from(i + 1);
let byte = 3 * i; let byte = 3 * i;
assert_eq!( assert_eq!(
assembler.parse_packet( assembler.parse_packet(
&byte_extend(&[0x12, 0x34, 0x56, cid, 0x80 | cmd, 0x00, 0x80], byte), &byte_extend(&[0x12, 0x34, 0x56, cid, 0x80 | cmd as u8, 0x00, 0x80], byte),
DUMMY_TIMESTAMP DUMMY_TIMESTAMP
), ),
Ok(None) Ok(None)
@@ -443,11 +446,12 @@ mod test {
); );
// Check that many sorts of packets on another channel are ignored. // Check that many sorts of packets on another channel are ignored.
for cmd in 0..=0xFF { for i in 0..=0xFF {
let cmd = CtapHidCommand::from(i);
for byte in 0..=0xFF { for byte in 0..=0xFF {
assert_eq!( assert_eq!(
assembler.parse_packet( assembler.parse_packet(
&byte_extend(&[0x12, 0x34, 0x56, 0x9A, cmd, 0x00], byte), &byte_extend(&[0x12, 0x34, 0x56, 0x9A, cmd as u8, 0x00], byte),
DUMMY_TIMESTAMP DUMMY_TIMESTAMP
), ),
Err(([0x12, 0x34, 0x56, 0x9A], Error::UnexpectedChannel)) Err(([0x12, 0x34, 0x56, 0x9A], Error::UnexpectedChannel))
@@ -462,7 +466,7 @@ mod test {
), ),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x01, cmd: CtapHidCommand::Ping,
payload: vec![0x00; 0x40] payload: vec![0x00; 0x40]
})) }))
); );
@@ -479,12 +483,12 @@ mod test {
let byte = 2 * i; let byte = 2 * i;
assert_eq!( assert_eq!(
assembler.parse_packet( assembler.parse_packet(
&byte_extend(&[0x12, 0x34, 0x56, 0x78, 0x80, 0x00, 0x10], byte), &byte_extend(&[0x12, 0x34, 0x56, 0x78, 0x81, 0x00, 0x10], byte),
DUMMY_TIMESTAMP DUMMY_TIMESTAMP
), ),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x00, cmd: CtapHidCommand::Ping,
payload: vec![byte; 0x10] payload: vec![byte; 0x10]
})) }))
); );
@@ -584,7 +588,7 @@ mod test {
assembler.parse_packet(&zero_extend(&[0x12, 0x34, 0x56, 0x78, 0x7F]), timestamp), assembler.parse_packet(&zero_extend(&[0x12, 0x34, 0x56, 0x78, 0x7F]), timestamp),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x01, cmd: CtapHidCommand::Ping,
payload: vec![0x00; 0x1DB9] payload: vec![0x00; 0x1DB9]
})) }))
); );
@@ -612,7 +616,7 @@ mod test {
), ),
Ok(Some(Message { Ok(Some(Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x06, cmd: CtapHidCommand::Init,
payload: vec![0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0] payload: vec![0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0]
})) }))
); );

View File

@@ -14,6 +14,9 @@
use super::{CtapHid, HidPacket, Message}; use super::{CtapHid, HidPacket, Message};
/// Iterator for HID packets.
///
/// The `new` constructor splits the CTAP `Message` into `HidPacket`s for sending over USB.
pub struct HidPacketIterator(Option<MessageSplitter>); pub struct HidPacketIterator(Option<MessageSplitter>);
impl HidPacketIterator { impl HidPacketIterator {
@@ -99,7 +102,7 @@ impl Iterator for MessageSplitter {
match self.seq { match self.seq {
None => { None => {
// First, send an initialization packet. // First, send an initialization packet.
self.packet[4] = self.message.cmd | CtapHid::TYPE_INIT_BIT; self.packet[4] = self.message.cmd as u8 | CtapHid::TYPE_INIT_BIT;
self.packet[5] = (payload_len >> 8) as u8; self.packet[5] = (payload_len >> 8) as u8;
self.packet[6] = payload_len as u8; self.packet[6] = payload_len as u8;
@@ -128,6 +131,7 @@ impl Iterator for MessageSplitter {
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use super::super::CtapHidCommand;
use super::*; use super::*;
fn assert_packet_output_equality(message: Message, expected_packets: Vec<HidPacket>) { fn assert_packet_output_equality(message: Message, expected_packets: Vec<HidPacket>) {
@@ -142,11 +146,11 @@ mod test {
fn test_hid_packet_iterator_single_packet() { fn test_hid_packet_iterator_single_packet() {
let message = Message { let message = Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x4C, cmd: CtapHidCommand::Cbor,
payload: vec![0xAA, 0xBB], payload: vec![0xAA, 0xBB],
}; };
let expected_packets: Vec<HidPacket> = vec![[ let expected_packets: Vec<HidPacket> = vec![[
0x12, 0x34, 0x56, 0x78, 0xCC, 0x00, 0x02, 0xAA, 0xBB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0x34, 0x56, 0x78, 0x90, 0x00, 0x02, 0xAA, 0xBB, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
@@ -159,11 +163,11 @@ mod test {
fn test_hid_packet_iterator_big_single_packet() { fn test_hid_packet_iterator_big_single_packet() {
let message = Message { let message = Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x4C, cmd: CtapHidCommand::Cbor,
payload: vec![0xAA; 64 - 7], payload: vec![0xAA; 64 - 7],
}; };
let expected_packets: Vec<HidPacket> = vec![[ let expected_packets: Vec<HidPacket> = vec![[
0x12, 0x34, 0x56, 0x78, 0xCC, 0x00, 0x39, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0x12, 0x34, 0x56, 0x78, 0x90, 0x00, 0x39, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
@@ -176,12 +180,12 @@ mod test {
fn test_hid_packet_iterator_two_packets() { fn test_hid_packet_iterator_two_packets() {
let message = Message { let message = Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x4C, cmd: CtapHidCommand::Cbor,
payload: vec![0xAA; 64 - 7 + 1], payload: vec![0xAA; 64 - 7 + 1],
}; };
let expected_packets: Vec<HidPacket> = vec![ let expected_packets: Vec<HidPacket> = vec![
[ [
0x12, 0x34, 0x56, 0x78, 0xCC, 0x00, 0x3A, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0x12, 0x34, 0x56, 0x78, 0x90, 0x00, 0x3A, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
@@ -204,12 +208,12 @@ mod test {
payload.extend(vec![0xBB; 64 - 5]); payload.extend(vec![0xBB; 64 - 5]);
let message = Message { let message = Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0x4C, cmd: CtapHidCommand::Cbor,
payload, payload,
}; };
let expected_packets: Vec<HidPacket> = vec![ let expected_packets: Vec<HidPacket> = vec![
[ [
0x12, 0x34, 0x56, 0x78, 0xCC, 0x00, 0x74, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0x12, 0x34, 0x56, 0x78, 0x90, 0x00, 0x74, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
@@ -238,12 +242,12 @@ mod test {
let message = Message { let message = Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0xAB, cmd: CtapHidCommand::Msg,
payload, payload,
}; };
let mut expected_packets: Vec<HidPacket> = vec![[ let mut expected_packets: Vec<HidPacket> = vec![[
0x12, 0x34, 0x56, 0x78, 0xAB, 0x1D, 0xB9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x12, 0x34, 0x56, 0x78, 0x83, 0x1D, 0xB9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
@@ -271,7 +275,7 @@ mod test {
assert_eq!(payload.len(), 0x1dba); assert_eq!(payload.len(), 0x1dba);
let message = Message { let message = Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0xAB, cmd: CtapHidCommand::Msg,
payload, payload,
}; };
assert!(HidPacketIterator::new(message).is_none()); assert!(HidPacketIterator::new(message).is_none());
@@ -283,7 +287,7 @@ mod test {
let payload = vec![0xFF; 0x10000]; let payload = vec![0xFF; 0x10000];
let message = Message { let message = Message {
cid: [0x12, 0x34, 0x56, 0x78], cid: [0x12, 0x34, 0x56, 0x78],
cmd: 0xAB, cmd: CtapHidCommand::Msg,
payload, payload,
}; };
assert!(HidPacketIterator::new(message).is_none()); assert!(HidPacketIterator::new(message).is_none());

4
src/env/tock/mod.rs vendored
View File

@@ -1,5 +1,5 @@
use self::storage::{SyscallStorage, SyscallUpgradeStorage}; use self::storage::{SyscallStorage, SyscallUpgradeStorage};
use crate::ctap::hid::{ChannelID, CtapHid, KeepaliveStatus, ProcessedPacket}; use crate::ctap::hid::{ChannelID, CtapHid, CtapHidCommand, KeepaliveStatus, ProcessedPacket};
use crate::ctap::status_code::Ctap2StatusCode; use crate::ctap::status_code::Ctap2StatusCode;
use crate::env::{Env, UserPresence}; use crate::env::{Env, UserPresence};
use core::cell::Cell; use core::cell::Cell;
@@ -121,7 +121,7 @@ fn send_keepalive_up_needed(
} }
match processed_packet { match processed_packet {
ProcessedPacket::InitPacket { cmd, .. } => { ProcessedPacket::InitPacket { cmd, .. } => {
if cmd == CtapHid::COMMAND_CANCEL { if cmd == CtapHidCommand::Cancel as u8 {
// We ignore the payload, we can't answer with an error code anyway. // We ignore the payload, we can't answer with an error code anyway.
#[cfg(feature = "debug_ctap")] #[cfg(feature = "debug_ctap")]
writeln!(Console::new(), "User presence check cancelled").unwrap(); writeln!(Console::new(), "User presence check cancelled").unwrap();