Merge branch 'master' into nfc-example-app
This commit is contained in:
@@ -12,71 +12,106 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// TODO(ia0): Remove when the module is used.
|
||||
#![allow(dead_code)]
|
||||
#[macro_use]
|
||||
mod bitfield;
|
||||
|
||||
use crate::bitfield::*;
|
||||
use crate::{Storage, StorageIndex, StoreError, StoreResult};
|
||||
#[cfg(test)]
|
||||
use self::bitfield::Length;
|
||||
use self::bitfield::{count_zeros, num_bits, Bit, Checksum, ConstField, Field};
|
||||
use crate::{usize_to_nat, Nat, Storage, StorageIndex, StoreError, StoreResult, StoreUpdate};
|
||||
use alloc::vec::Vec;
|
||||
use core::cmp::min;
|
||||
use core::convert::TryFrom;
|
||||
|
||||
/// Internal representation of a word in flash.
|
||||
///
|
||||
/// Currently, the store only supports storages where a word is 32 bits.
|
||||
type WORD = u32;
|
||||
|
||||
/// Abstract representation of a word in flash.
|
||||
///
|
||||
/// This type is kept abstract to avoid possible confusion with `Nat` if they happen to have the
|
||||
/// same representation. This is because they have different semantics, `Nat` represents natural
|
||||
/// numbers while `Word` represents sequences of bits (and thus has no arithmetic).
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||
pub struct Word(WORD);
|
||||
|
||||
/// Byte slice representation of a word in flash.
|
||||
///
|
||||
/// The slice is in little-endian representation.
|
||||
pub type WordSlice = [u8; core::mem::size_of::<WORD>()];
|
||||
|
||||
impl Word {
|
||||
/// Converts a byte slice into a word.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if `slice.len() != WORD_SIZE`.
|
||||
pub fn from_slice(slice: &[u8]) -> Word {
|
||||
Word(WORD::from_le_bytes(<WordSlice>::try_from(slice).unwrap()))
|
||||
}
|
||||
|
||||
/// Converts a word into a byte slice.
|
||||
pub fn as_slice(self) -> WordSlice {
|
||||
self.0.to_le_bytes()
|
||||
}
|
||||
}
|
||||
|
||||
/// Size of a word in bytes.
|
||||
///
|
||||
/// Currently, the store only supports storages where a word is 4 bytes.
|
||||
const WORD_SIZE: usize = core::mem::size_of::<WORD>();
|
||||
const WORD_SIZE: Nat = core::mem::size_of::<WORD>() as Nat;
|
||||
|
||||
/// Minimum number of words per page.
|
||||
///
|
||||
/// Currently, the store only supports storages where pages have at least 8 words.
|
||||
const MIN_NUM_WORDS_PER_PAGE: usize = 8;
|
||||
const MIN_NUM_WORDS_PER_PAGE: Nat = 8;
|
||||
|
||||
/// Maximum size of a page in bytes.
|
||||
///
|
||||
/// Currently, the store only supports storages where pages are between 8 and 1024 [words].
|
||||
///
|
||||
/// [words]: constant.WORD_SIZE.html
|
||||
const MAX_PAGE_SIZE: usize = 4096;
|
||||
const MAX_PAGE_SIZE: Nat = 4096;
|
||||
|
||||
/// Maximum number of erase cycles.
|
||||
///
|
||||
/// Currently, the store only supports storages where the maximum number of erase cycles fits on 16
|
||||
/// bits.
|
||||
const MAX_ERASE_CYCLE: usize = 65535;
|
||||
const MAX_ERASE_CYCLE: Nat = 65535;
|
||||
|
||||
/// Minimum number of pages.
|
||||
///
|
||||
/// Currently, the store only supports storages with at least 3 pages.
|
||||
const MIN_NUM_PAGES: usize = 3;
|
||||
const MIN_NUM_PAGES: Nat = 3;
|
||||
|
||||
/// Maximum page index.
|
||||
///
|
||||
/// Thus the maximum number of pages is one more than this number. Currently, the store only
|
||||
/// supports storages where the number of pages is between 3 and 64.
|
||||
const MAX_PAGE_INDEX: usize = 63;
|
||||
const MAX_PAGE_INDEX: Nat = 63;
|
||||
|
||||
/// Maximum key index.
|
||||
///
|
||||
/// Thus the number of keys is one more than this number. Currently, the store only supports 4096
|
||||
/// keys.
|
||||
const MAX_KEY_INDEX: usize = 4095;
|
||||
const MAX_KEY_INDEX: Nat = 4095;
|
||||
|
||||
/// Maximum length in bytes of a user payload.
|
||||
///
|
||||
/// Currently, the store only supports values smaller than 1024 bytes.
|
||||
const MAX_VALUE_LEN: usize = 1023;
|
||||
const MAX_VALUE_LEN: Nat = 1023;
|
||||
|
||||
/// Maximum number of updates per transaction.
|
||||
///
|
||||
/// Currently, the store only supports transactions with at most 31 updates.
|
||||
const MAX_UPDATES: usize = 31;
|
||||
const MAX_UPDATES: Nat = 31;
|
||||
|
||||
/// Maximum number of words per virtual page.
|
||||
const MAX_VIRT_PAGE_SIZE: usize = div_ceil(MAX_PAGE_SIZE, WORD_SIZE) - CONTENT_WORD;
|
||||
const MAX_VIRT_PAGE_SIZE: Nat = div_ceil(MAX_PAGE_SIZE, WORD_SIZE) - CONTENT_WORD;
|
||||
|
||||
/// Word with all bits set to one.
|
||||
const ERASED_WORD: WORD = !(0 as WORD);
|
||||
const ERASED_WORD: Word = Word(!(0 as WORD));
|
||||
|
||||
/// Helpers for a given storage configuration.
|
||||
#[derive(Clone, Debug)]
|
||||
@@ -88,7 +123,7 @@ pub struct Format {
|
||||
/// - Words divide a page evenly.
|
||||
/// - There are at least 8 words in a page.
|
||||
/// - There are at most `MAX_PAGE_SIZE` bytes in a page.
|
||||
page_size: usize,
|
||||
page_size: Nat,
|
||||
|
||||
/// The number of pages in the storage.
|
||||
///
|
||||
@@ -96,14 +131,14 @@ pub struct Format {
|
||||
///
|
||||
/// - There are at least 3 pages.
|
||||
/// - There are at most `MAX_PAGE_INDEX + 1` pages.
|
||||
num_pages: usize,
|
||||
num_pages: Nat,
|
||||
|
||||
/// The maximum number of times a page can be erased.
|
||||
///
|
||||
/// # Invariant
|
||||
///
|
||||
/// - A page can be erased at most `MAX_ERASE_CYCLE` times.
|
||||
max_page_erases: usize,
|
||||
max_page_erases: Nat,
|
||||
}
|
||||
|
||||
impl Format {
|
||||
@@ -115,9 +150,9 @@ impl Format {
|
||||
pub fn new<S: Storage>(storage: &S) -> Option<Format> {
|
||||
if Format::is_storage_supported(storage) {
|
||||
Some(Format {
|
||||
page_size: storage.page_size(),
|
||||
num_pages: storage.num_pages(),
|
||||
max_page_erases: storage.max_page_erases(),
|
||||
page_size: usize_to_nat(storage.page_size()),
|
||||
num_pages: usize_to_nat(storage.num_pages()),
|
||||
max_page_erases: usize_to_nat(storage.max_page_erases()),
|
||||
})
|
||||
} else {
|
||||
None
|
||||
@@ -143,11 +178,11 @@ impl Format {
|
||||
/// [`MAX_PAGE_INDEX`]: constant.MAX_PAGE_INDEX.html
|
||||
/// [`MAX_ERASE_CYCLE`]: constant.MAX_ERASE_CYCLE.html
|
||||
fn is_storage_supported<S: Storage>(storage: &S) -> bool {
|
||||
let word_size = storage.word_size();
|
||||
let page_size = storage.page_size();
|
||||
let num_pages = storage.num_pages();
|
||||
let max_word_writes = storage.max_word_writes();
|
||||
let max_page_erases = storage.max_page_erases();
|
||||
let word_size = usize_to_nat(storage.word_size());
|
||||
let page_size = usize_to_nat(storage.page_size());
|
||||
let num_pages = usize_to_nat(storage.num_pages());
|
||||
let max_word_writes = usize_to_nat(storage.max_word_writes());
|
||||
let max_page_erases = usize_to_nat(storage.max_page_erases());
|
||||
word_size == WORD_SIZE
|
||||
&& page_size % word_size == 0
|
||||
&& (MIN_NUM_WORDS_PER_PAGE * word_size <= page_size && page_size <= MAX_PAGE_SIZE)
|
||||
@@ -157,45 +192,45 @@ impl Format {
|
||||
}
|
||||
|
||||
/// The size of a word in bytes.
|
||||
pub fn word_size(&self) -> usize {
|
||||
pub fn word_size(&self) -> Nat {
|
||||
WORD_SIZE
|
||||
}
|
||||
|
||||
/// The size of a page in bytes.
|
||||
///
|
||||
/// We have `MIN_NUM_WORDS_PER_PAGE * self.word_size() <= self.page_size() <= MAX_PAGE_SIZE`.
|
||||
pub fn page_size(&self) -> usize {
|
||||
pub fn page_size(&self) -> Nat {
|
||||
self.page_size
|
||||
}
|
||||
|
||||
/// The number of pages in the storage, denoted by `N`.
|
||||
///
|
||||
/// We have `MIN_NUM_PAGES <= N <= MAX_PAGE_INDEX + 1`.
|
||||
pub fn num_pages(&self) -> usize {
|
||||
pub fn num_pages(&self) -> Nat {
|
||||
self.num_pages
|
||||
}
|
||||
|
||||
/// The maximum page index.
|
||||
///
|
||||
/// We have `2 <= self.max_page() <= MAX_PAGE_INDEX`.
|
||||
pub fn max_page(&self) -> usize {
|
||||
pub fn max_page(&self) -> Nat {
|
||||
self.num_pages - 1
|
||||
}
|
||||
|
||||
/// The maximum number of times a page can be erased, denoted by `E`.
|
||||
///
|
||||
/// We have `E <= MAX_ERASE_CYCLE`.
|
||||
pub fn max_page_erases(&self) -> usize {
|
||||
pub fn max_page_erases(&self) -> Nat {
|
||||
self.max_page_erases
|
||||
}
|
||||
|
||||
/// The maximum key.
|
||||
pub fn max_key(&self) -> usize {
|
||||
pub fn max_key(&self) -> Nat {
|
||||
MAX_KEY_INDEX
|
||||
}
|
||||
|
||||
/// The maximum number of updates per transaction.
|
||||
pub fn max_updates(&self) -> usize {
|
||||
pub fn max_updates(&self) -> Nat {
|
||||
MAX_UPDATES
|
||||
}
|
||||
|
||||
@@ -204,7 +239,7 @@ impl Format {
|
||||
/// A virtual page is stored in a physical page after the page header.
|
||||
///
|
||||
/// We have `MIN_NUM_WORDS_PER_PAGE - 2 <= Q <= MAX_VIRT_PAGE_SIZE`.
|
||||
pub fn virt_page_size(&self) -> usize {
|
||||
pub fn virt_page_size(&self) -> Nat {
|
||||
self.page_size() / self.word_size() - CONTENT_WORD
|
||||
}
|
||||
|
||||
@@ -212,7 +247,7 @@ impl Format {
|
||||
///
|
||||
/// We have `(MIN_NUM_WORDS_PER_PAGE - 3) * self.word_size() <= self.max_value_len() <=
|
||||
/// MAX_VALUE_LEN`.
|
||||
pub fn max_value_len(&self) -> usize {
|
||||
pub fn max_value_len(&self) -> Nat {
|
||||
min(
|
||||
(self.virt_page_size() - 1) * self.word_size(),
|
||||
MAX_VALUE_LEN,
|
||||
@@ -225,7 +260,7 @@ impl Format {
|
||||
/// virtual page. This happens because entries may overlap up to 2 virtual pages.
|
||||
///
|
||||
/// We have `MIN_NUM_WORDS_PER_PAGE - 3 <= M < Q`.
|
||||
pub fn max_prefix_len(&self) -> usize {
|
||||
pub fn max_prefix_len(&self) -> Nat {
|
||||
self.bytes_to_words(self.max_value_len())
|
||||
}
|
||||
|
||||
@@ -239,7 +274,7 @@ impl Format {
|
||||
/// - `V >= (N - 1) * (Q - 1) - (Q - 1)` from `V` definition
|
||||
///
|
||||
/// [`M`]: struct.Format.html#method.max_prefix_len
|
||||
pub fn virt_size(&self) -> usize {
|
||||
pub fn virt_size(&self) -> Nat {
|
||||
(self.num_pages() - 1) * (self.virt_page_size() - 1) - self.max_prefix_len()
|
||||
}
|
||||
|
||||
@@ -253,7 +288,7 @@ impl Format {
|
||||
/// - `(N - 2) * (Q - 1) - N = (N - 2) * (Q - 2) - 2` by calculus
|
||||
///
|
||||
/// [`V`]: struct.Format.html#method.virt_size
|
||||
pub fn total_capacity(&self) -> usize {
|
||||
pub fn total_capacity(&self) -> Nat {
|
||||
// From the virtual capacity, we reserve N - 1 words for `Erase` entries and 1 word for a
|
||||
// `Clear` entry.
|
||||
self.virt_size() - self.num_pages()
|
||||
@@ -270,18 +305,21 @@ impl Format {
|
||||
///
|
||||
/// The init info of the page must be provided to know where the first entry of the page
|
||||
/// starts.
|
||||
pub fn page_head(&self, init: InitInfo, page: usize) -> Position {
|
||||
pub fn page_head(&self, init: InitInfo, page: Nat) -> Position {
|
||||
Position::new(self, init.cycle, page, init.prefix)
|
||||
}
|
||||
|
||||
/// Returns the storage index of the init info of a page.
|
||||
pub fn index_init(&self, page: usize) -> StorageIndex {
|
||||
pub fn index_init(&self, page: Nat) -> StorageIndex {
|
||||
let byte = INIT_WORD * self.word_size();
|
||||
StorageIndex { page, byte }
|
||||
StorageIndex {
|
||||
page: page as usize,
|
||||
byte: byte as usize,
|
||||
}
|
||||
}
|
||||
|
||||
/// Parses the init info of a page from its storage representation.
|
||||
pub fn parse_init(&self, word: WORD) -> StoreResult<WordState<InitInfo>> {
|
||||
pub fn parse_init(&self, word: Word) -> StoreResult<WordState<InitInfo>> {
|
||||
Ok(if word == ERASED_WORD {
|
||||
WordState::Erased
|
||||
} else if WORD_CHECKSUM.get(word)? != 0 {
|
||||
@@ -297,22 +335,25 @@ impl Format {
|
||||
}
|
||||
|
||||
/// Builds the storage representation of an init info.
|
||||
pub fn build_init(&self, init: InitInfo) -> [u8; WORD_SIZE] {
|
||||
pub fn build_init(&self, init: InitInfo) -> WordSlice {
|
||||
let mut word = ERASED_WORD;
|
||||
INIT_CYCLE.set(&mut word, init.cycle);
|
||||
INIT_PREFIX.set(&mut word, init.prefix);
|
||||
WORD_CHECKSUM.set(&mut word, 0);
|
||||
word.to_ne_bytes()
|
||||
word.as_slice()
|
||||
}
|
||||
|
||||
/// Returns the storage index of the compact info of a page.
|
||||
pub fn index_compact(&self, page: usize) -> StorageIndex {
|
||||
pub fn index_compact(&self, page: Nat) -> StorageIndex {
|
||||
let byte = COMPACT_WORD * self.word_size();
|
||||
StorageIndex { page, byte }
|
||||
StorageIndex {
|
||||
page: page as usize,
|
||||
byte: byte as usize,
|
||||
}
|
||||
}
|
||||
|
||||
/// Parses the compact info of a page from its storage representation.
|
||||
pub fn parse_compact(&self, word: WORD) -> StoreResult<WordState<CompactInfo>> {
|
||||
pub fn parse_compact(&self, word: Word) -> StoreResult<WordState<CompactInfo>> {
|
||||
Ok(if word == ERASED_WORD {
|
||||
WordState::Erased
|
||||
} else if WORD_CHECKSUM.get(word)? != 0 {
|
||||
@@ -327,15 +368,15 @@ impl Format {
|
||||
}
|
||||
|
||||
/// Builds the storage representation of a compact info.
|
||||
pub fn build_compact(&self, compact: CompactInfo) -> [u8; WORD_SIZE] {
|
||||
pub fn build_compact(&self, compact: CompactInfo) -> WordSlice {
|
||||
let mut word = ERASED_WORD;
|
||||
COMPACT_TAIL.set(&mut word, compact.tail);
|
||||
WORD_CHECKSUM.set(&mut word, 0);
|
||||
word.to_ne_bytes()
|
||||
word.as_slice()
|
||||
}
|
||||
|
||||
/// Builds the storage representation of an internal entry.
|
||||
pub fn build_internal(&self, internal: InternalEntry) -> [u8; WORD_SIZE] {
|
||||
pub fn build_internal(&self, internal: InternalEntry) -> WordSlice {
|
||||
let mut word = ERASED_WORD;
|
||||
match internal {
|
||||
InternalEntry::Erase { page } => {
|
||||
@@ -356,11 +397,11 @@ impl Format {
|
||||
}
|
||||
}
|
||||
WORD_CHECKSUM.set(&mut word, 0);
|
||||
word.to_ne_bytes()
|
||||
word.as_slice()
|
||||
}
|
||||
|
||||
/// Parses the first word of an entry from its storage representation.
|
||||
pub fn parse_word(&self, word: WORD) -> StoreResult<WordState<ParsedWord>> {
|
||||
pub fn parse_word(&self, word: Word) -> StoreResult<WordState<ParsedWord>> {
|
||||
let valid = if ID_PADDING.check(word) {
|
||||
ParsedWord::Padding(Padding { length: 0 })
|
||||
} else if ID_HEADER.check(word) {
|
||||
@@ -418,55 +459,113 @@ impl Format {
|
||||
}
|
||||
|
||||
/// Builds the storage representation of a user entry.
|
||||
pub fn build_user(&self, key: usize, value: &[u8]) -> Vec<u8> {
|
||||
let length = value.len();
|
||||
pub fn build_user(&self, key: Nat, value: &[u8]) -> Vec<u8> {
|
||||
let length = usize_to_nat(value.len());
|
||||
let word_size = self.word_size();
|
||||
let footer = self.bytes_to_words(length);
|
||||
let mut result = vec![0xff; (1 + footer) * word_size];
|
||||
result[word_size..][..length].copy_from_slice(value);
|
||||
let mut result = vec![0xff; ((1 + footer) * word_size) as usize];
|
||||
result[word_size as usize..][..length as usize].copy_from_slice(value);
|
||||
let mut word = ERASED_WORD;
|
||||
ID_HEADER.set(&mut word);
|
||||
if footer > 0 && is_erased(&result[footer * word_size..]) {
|
||||
if footer > 0 && is_erased(&result[(footer * word_size) as usize..]) {
|
||||
HEADER_FLIPPED.set(&mut word);
|
||||
*result.last_mut().unwrap() = 0x7f;
|
||||
}
|
||||
HEADER_LENGTH.set(&mut word, length);
|
||||
HEADER_KEY.set(&mut word, key);
|
||||
HEADER_CHECKSUM.set(&mut word, count_zeros(&result[footer * word_size..]));
|
||||
result[..word_size].copy_from_slice(&word.to_ne_bytes());
|
||||
HEADER_CHECKSUM.set(
|
||||
&mut word,
|
||||
count_zeros(&result[(footer * word_size) as usize..]),
|
||||
);
|
||||
result[..word_size as usize].copy_from_slice(&word.as_slice());
|
||||
result
|
||||
}
|
||||
|
||||
/// Sets the padding bit in the first word of a user entry.
|
||||
pub fn set_padding(&self, word: &mut WORD) {
|
||||
pub fn set_padding(&self, word: &mut Word) {
|
||||
ID_PADDING.set(word);
|
||||
}
|
||||
|
||||
/// Sets the deleted bit in the first word of a user entry.
|
||||
pub fn set_deleted(&self, word: &mut WORD) {
|
||||
pub fn set_deleted(&self, word: &mut Word) {
|
||||
HEADER_DELETED.set(word);
|
||||
}
|
||||
|
||||
/// Returns the capacity required by a transaction.
|
||||
pub fn transaction_capacity(&self, updates: &[StoreUpdate]) -> Nat {
|
||||
match updates.len() {
|
||||
// An empty transaction doesn't consume anything.
|
||||
0 => 0,
|
||||
// Transactions with a single update are optimized by avoiding a marker entry.
|
||||
1 => match &updates[0] {
|
||||
StoreUpdate::Insert { value, .. } => self.entry_size(value),
|
||||
// Transactions with a single update which is a removal don't consume anything.
|
||||
StoreUpdate::Remove { .. } => 0,
|
||||
},
|
||||
// A transaction consumes one word for the marker entry in addition to its updates.
|
||||
_ => 1 + updates.iter().map(|x| self.update_capacity(x)).sum::<Nat>(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the capacity of an update.
|
||||
fn update_capacity(&self, update: &StoreUpdate) -> Nat {
|
||||
match update {
|
||||
StoreUpdate::Insert { value, .. } => self.entry_size(value),
|
||||
StoreUpdate::Remove { .. } => 1,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the size of a user entry given its value.
|
||||
pub fn entry_size(&self, value: &[u8]) -> Nat {
|
||||
1 + self.bytes_to_words(usize_to_nat(value.len()))
|
||||
}
|
||||
|
||||
/// Checks if a transaction is valid and returns its sorted keys.
|
||||
///
|
||||
/// Returns `None` if the transaction is invalid.
|
||||
pub fn transaction_valid(&self, updates: &[StoreUpdate]) -> Option<Vec<Nat>> {
|
||||
if usize_to_nat(updates.len()) > self.max_updates() {
|
||||
return None;
|
||||
}
|
||||
let mut sorted_keys = Vec::with_capacity(updates.len());
|
||||
for update in updates {
|
||||
let key = usize_to_nat(update.key());
|
||||
if key > self.max_key() {
|
||||
return None;
|
||||
}
|
||||
if let Some(value) = update.value() {
|
||||
if usize_to_nat(value.len()) > self.max_value_len() {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
match sorted_keys.binary_search(&key) {
|
||||
Ok(_) => return None,
|
||||
Err(pos) => sorted_keys.insert(pos, key),
|
||||
}
|
||||
}
|
||||
Some(sorted_keys)
|
||||
}
|
||||
|
||||
/// Returns the minimum number of words to represent a given number of bytes.
|
||||
///
|
||||
/// # Preconditions
|
||||
///
|
||||
/// - `bytes + self.word_size()` does not overflow.
|
||||
pub fn bytes_to_words(&self, bytes: usize) -> usize {
|
||||
pub fn bytes_to_words(&self, bytes: Nat) -> Nat {
|
||||
div_ceil(bytes, self.word_size())
|
||||
}
|
||||
}
|
||||
|
||||
/// The word index of the init info in a page.
|
||||
const INIT_WORD: usize = 0;
|
||||
const INIT_WORD: Nat = 0;
|
||||
|
||||
/// The word index of the compact info in a page.
|
||||
const COMPACT_WORD: usize = 1;
|
||||
const COMPACT_WORD: Nat = 1;
|
||||
|
||||
/// The word index of the content of a page.
|
||||
///
|
||||
/// Since a page is at least 8 words, there is always at least 6 words of content.
|
||||
const CONTENT_WORD: usize = 2;
|
||||
const CONTENT_WORD: Nat = 2;
|
||||
|
||||
/// The checksum for a single word.
|
||||
///
|
||||
@@ -619,27 +718,36 @@ bitfield! {
|
||||
///
|
||||
/// Then the position of a word is `(c*N + p)*Q + w`. This position monotonically increases and
|
||||
/// represents the consumed lifetime of the storage.
|
||||
///
|
||||
/// This type is kept abstract to avoid possible confusion with `Nat` and `Word` if they happen to
|
||||
/// have the same representation. Here is an overview of their semantics:
|
||||
///
|
||||
/// | Name | Semantics | Arithmetic operations | Bit-wise operations |
|
||||
/// | ---------- | --------------------------- | --------------------- | ------------------- |
|
||||
/// | `Nat` | Natural numbers | Yes (no overflow) | No |
|
||||
/// | `Word` | Word in flash | No | Yes |
|
||||
/// | `Position` | Position in virtual storage | Yes (no overflow) | No |
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
||||
pub struct Position(usize);
|
||||
pub struct Position(Nat);
|
||||
|
||||
impl core::ops::Add<usize> for Position {
|
||||
impl core::ops::Add<Nat> for Position {
|
||||
type Output = Position;
|
||||
|
||||
fn add(self, delta: usize) -> Position {
|
||||
fn add(self, delta: Nat) -> Position {
|
||||
Position(self.0 + delta)
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Sub<Position> for Position {
|
||||
type Output = usize;
|
||||
type Output = Nat;
|
||||
|
||||
fn sub(self, base: Position) -> usize {
|
||||
fn sub(self, base: Position) -> Nat {
|
||||
self.0 - base.0
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::AddAssign<usize> for Position {
|
||||
fn add_assign(&mut self, delta: usize) {
|
||||
impl core::ops::AddAssign<Nat> for Position {
|
||||
fn add_assign(&mut self, delta: Nat) {
|
||||
self.0 += delta;
|
||||
}
|
||||
}
|
||||
@@ -651,12 +759,12 @@ impl Position {
|
||||
/// - Its word index in its page.
|
||||
/// - Its page index in the storage.
|
||||
/// - The number of times that page was erased.
|
||||
pub fn new(format: &Format, cycle: usize, page: usize, word: usize) -> Position {
|
||||
pub fn new(format: &Format, cycle: Nat, page: Nat, word: Nat) -> Position {
|
||||
Position((cycle * format.num_pages() + page) * format.virt_page_size() + word)
|
||||
}
|
||||
|
||||
/// Accesses the underlying position as a natural number.
|
||||
pub fn get(self) -> usize {
|
||||
pub fn get(self) -> Nat {
|
||||
self.0
|
||||
}
|
||||
|
||||
@@ -665,7 +773,10 @@ impl Position {
|
||||
let page = self.page(format);
|
||||
let word = CONTENT_WORD + self.word(format);
|
||||
let byte = word * format.word_size();
|
||||
StorageIndex { page, byte }
|
||||
StorageIndex {
|
||||
page: page as usize,
|
||||
byte: byte as usize,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the beginning of the current virtual page.
|
||||
@@ -681,17 +792,17 @@ impl Position {
|
||||
}
|
||||
|
||||
/// Returns the number of times the current page was erased.
|
||||
pub fn cycle(self, format: &Format) -> usize {
|
||||
pub fn cycle(self, format: &Format) -> Nat {
|
||||
(self.0 / format.virt_page_size()) / format.num_pages()
|
||||
}
|
||||
|
||||
/// Returns the current page index.
|
||||
pub fn page(self, format: &Format) -> usize {
|
||||
pub fn page(self, format: &Format) -> Nat {
|
||||
(self.0 / format.virt_page_size()) % format.num_pages()
|
||||
}
|
||||
|
||||
/// Returns the current word index in the page.
|
||||
pub fn word(self, format: &Format) -> usize {
|
||||
pub fn word(self, format: &Format) -> Nat {
|
||||
self.0 % format.virt_page_size()
|
||||
}
|
||||
}
|
||||
@@ -711,16 +822,16 @@ pub enum WordState<T> {
|
||||
/// Information for an initialized page.
|
||||
pub struct InitInfo {
|
||||
/// The number of times this page has been erased.
|
||||
pub cycle: usize,
|
||||
pub cycle: Nat,
|
||||
|
||||
/// The word index of the first entry in this virtual page.
|
||||
pub prefix: usize,
|
||||
pub prefix: Nat,
|
||||
}
|
||||
|
||||
/// Information for a page being compacted.
|
||||
pub struct CompactInfo {
|
||||
/// The distance in words between head and tail at compaction.
|
||||
pub tail: usize,
|
||||
pub tail: Nat,
|
||||
}
|
||||
|
||||
/// The first word of an entry.
|
||||
@@ -740,7 +851,7 @@ pub enum ParsedWord {
|
||||
#[derive(Debug)]
|
||||
pub struct Padding {
|
||||
/// The number of following padding words after the first word of the padding entry.
|
||||
pub length: usize,
|
||||
pub length: Nat,
|
||||
}
|
||||
|
||||
/// Header of a user entry.
|
||||
@@ -750,13 +861,13 @@ pub struct Header {
|
||||
pub flipped: bool,
|
||||
|
||||
/// The length in bytes of the user data.
|
||||
pub length: usize,
|
||||
pub length: Nat,
|
||||
|
||||
/// The key of the user entry.
|
||||
pub key: usize,
|
||||
pub key: Nat,
|
||||
|
||||
/// The checksum of the user entry.
|
||||
pub checksum: usize,
|
||||
pub checksum: Nat,
|
||||
}
|
||||
|
||||
impl Header {
|
||||
@@ -775,13 +886,13 @@ pub enum InternalEntry {
|
||||
/// Indicates that a page should be erased.
|
||||
Erase {
|
||||
/// The page to be erased.
|
||||
page: usize,
|
||||
page: Nat,
|
||||
},
|
||||
|
||||
/// Indicates that user entries with high key should be deleted.
|
||||
Clear {
|
||||
/// The minimum key a user entry should have to be deleted.
|
||||
min_key: usize,
|
||||
min_key: Nat,
|
||||
},
|
||||
|
||||
/// Marks the start of a transaction.
|
||||
@@ -790,7 +901,7 @@ pub enum InternalEntry {
|
||||
/// entries.
|
||||
Marker {
|
||||
/// The number of updates in the transaction.
|
||||
count: usize,
|
||||
count: Nat,
|
||||
},
|
||||
|
||||
/// Indicates that a user entry should be removed.
|
||||
@@ -799,7 +910,7 @@ pub enum InternalEntry {
|
||||
/// already atomic.
|
||||
Remove {
|
||||
/// The key of the user entry to be removed.
|
||||
key: usize,
|
||||
key: Nat,
|
||||
},
|
||||
}
|
||||
|
||||
@@ -815,7 +926,7 @@ pub fn is_erased(slice: &[u8]) -> bool {
|
||||
/// # Preconditions
|
||||
///
|
||||
/// - `x + m` does not overflow.
|
||||
const fn div_ceil(x: usize, m: usize) -> usize {
|
||||
const fn div_ceil(x: Nat, m: Nat) -> Nat {
|
||||
(x + m - 1) / m
|
||||
}
|
||||
|
||||
@@ -825,7 +936,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn size_of_format() {
|
||||
assert_eq!(std::mem::size_of::<Format>(), 24);
|
||||
assert_eq!(std::mem::size_of::<Format>(), 12);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -921,6 +1032,18 @@ mod tests {
|
||||
assert_eq!(LEN_REMOVE.pos, 17);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn word_from_slice_ok() {
|
||||
assert_eq!(
|
||||
Word::from_slice(&[0x04, 0x03, 0x02, 0x01]),
|
||||
Word(0x01020304)
|
||||
);
|
||||
assert_eq!(
|
||||
Word::from_slice(&[0x1e, 0x3c, 0x78, 0xf0]),
|
||||
Word(0xf0783c1e)
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn is_erased_ok() {
|
||||
assert!(is_erased(&[]));
|
||||
|
||||
@@ -12,9 +12,12 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
//! Helps manipulate bit fields in 32-bits words.
|
||||
//! Helps manipulate words as bit fields.
|
||||
//!
|
||||
//! This module assumes that `Word` and `Nat` are both represented as `u32`.
|
||||
|
||||
use crate::{StoreError, StoreResult};
|
||||
use crate::format::Word;
|
||||
use crate::{Nat, StoreError, StoreResult};
|
||||
|
||||
/// Represents a bit field.
|
||||
///
|
||||
@@ -25,16 +28,16 @@ use crate::{StoreError, StoreResult};
|
||||
/// - The bit field must fit in a 32-bits word: `pos + len < 32`.
|
||||
pub struct Field {
|
||||
/// The position of the bit field.
|
||||
pub pos: usize,
|
||||
pub pos: Nat,
|
||||
|
||||
/// The length of the bit field.
|
||||
pub len: usize,
|
||||
pub len: Nat,
|
||||
}
|
||||
|
||||
impl Field {
|
||||
/// Reads the value of a bit field.
|
||||
pub fn get(&self, word: u32) -> usize {
|
||||
((word >> self.pos) & self.mask()) as usize
|
||||
pub fn get(&self, word: Word) -> Nat {
|
||||
(word.0 >> self.pos) & self.mask()
|
||||
}
|
||||
|
||||
/// Sets the value of a bit field.
|
||||
@@ -43,12 +46,11 @@ impl Field {
|
||||
///
|
||||
/// - The value must fit in the bit field: `num_bits(value) < self.len`.
|
||||
/// - The value must only change bits from 1 to 0: `self.get(*word) & value == value`.
|
||||
pub fn set(&self, word: &mut u32, value: usize) {
|
||||
let value = value as u32;
|
||||
pub fn set(&self, word: &mut Word, value: Nat) {
|
||||
debug_assert_eq!(value & self.mask(), value);
|
||||
let mask = !(self.mask() << self.pos);
|
||||
*word &= mask | (value << self.pos);
|
||||
debug_assert_eq!(self.get(*word), value as usize);
|
||||
word.0 &= mask | (value << self.pos);
|
||||
debug_assert_eq!(self.get(*word), value);
|
||||
}
|
||||
|
||||
/// Returns a bit mask the length of the bit field.
|
||||
@@ -70,17 +72,17 @@ pub struct ConstField {
|
||||
pub field: Field,
|
||||
|
||||
/// The constant value.
|
||||
pub value: usize,
|
||||
pub value: Nat,
|
||||
}
|
||||
|
||||
impl ConstField {
|
||||
/// Checks that the bit field has its value.
|
||||
pub fn check(&self, word: u32) -> bool {
|
||||
pub fn check(&self, word: Word) -> bool {
|
||||
self.field.get(word) == self.value
|
||||
}
|
||||
|
||||
/// Sets the bit field to its value.
|
||||
pub fn set(&self, word: &mut u32) {
|
||||
pub fn set(&self, word: &mut Word) {
|
||||
self.field.set(word, self.value);
|
||||
}
|
||||
}
|
||||
@@ -92,18 +94,18 @@ impl ConstField {
|
||||
/// - The bit must fit in a 32-bits word: `pos < 32`.
|
||||
pub struct Bit {
|
||||
/// The position of the bit.
|
||||
pub pos: usize,
|
||||
pub pos: Nat,
|
||||
}
|
||||
|
||||
impl Bit {
|
||||
/// Returns whether the value of the bit is zero.
|
||||
pub fn get(&self, word: u32) -> bool {
|
||||
word & (1 << self.pos) == 0
|
||||
pub fn get(&self, word: Word) -> bool {
|
||||
word.0 & (1 << self.pos) == 0
|
||||
}
|
||||
|
||||
/// Sets the value of the bit to zero.
|
||||
pub fn set(&self, word: &mut u32) {
|
||||
*word &= !(1 << self.pos);
|
||||
pub fn set(&self, word: &mut Word) {
|
||||
word.0 &= !(1 << self.pos);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -123,9 +125,9 @@ impl Checksum {
|
||||
/// # Errors
|
||||
///
|
||||
/// Returns `InvalidStorage` if the external increment would be negative.
|
||||
pub fn get(&self, word: u32) -> StoreResult<usize> {
|
||||
pub fn get(&self, word: Word) -> StoreResult<Nat> {
|
||||
let checksum = self.field.get(word);
|
||||
let zeros = word.count_zeros() as usize - (self.field.len - checksum.count_ones() as usize);
|
||||
let zeros = word.0.count_zeros() - (self.field.len - checksum.count_ones());
|
||||
checksum
|
||||
.checked_sub(zeros)
|
||||
.ok_or(StoreError::InvalidStorage)
|
||||
@@ -139,9 +141,9 @@ impl Checksum {
|
||||
/// self.field.mask()`.
|
||||
/// - The checksum value should fit in the checksum bit field: `num_bits(word.count_zeros() +
|
||||
/// value) < self.field.len`.
|
||||
pub fn set(&self, word: &mut u32, value: usize) {
|
||||
debug_assert_eq!(self.field.get(*word), self.field.mask() as usize);
|
||||
self.field.set(word, word.count_zeros() as usize + value);
|
||||
pub fn set(&self, word: &mut Word, value: Nat) {
|
||||
debug_assert_eq!(self.field.get(*word), self.field.mask());
|
||||
self.field.set(word, word.0.count_zeros() + value);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -153,7 +155,7 @@ impl Checksum {
|
||||
#[cfg(any(doc, test))]
|
||||
pub struct Length {
|
||||
/// The position of the next available bit.
|
||||
pub pos: usize,
|
||||
pub pos: Nat,
|
||||
}
|
||||
|
||||
/// Helps defining contiguous bit fields.
|
||||
@@ -266,13 +268,13 @@ macro_rules! bitfield_impl {
|
||||
}
|
||||
|
||||
/// Counts the number of bits equal to zero in a byte slice.
|
||||
pub fn count_zeros(slice: &[u8]) -> usize {
|
||||
slice.iter().map(|&x| x.count_zeros() as usize).sum()
|
||||
pub fn count_zeros(slice: &[u8]) -> Nat {
|
||||
slice.iter().map(|&x| x.count_zeros()).sum()
|
||||
}
|
||||
|
||||
/// Returns the number of bits necessary to represent a number.
|
||||
pub const fn num_bits(x: usize) -> usize {
|
||||
8 * core::mem::size_of::<usize>() - x.leading_zeros() as usize
|
||||
pub const fn num_bits(x: Nat) -> Nat {
|
||||
8 * core::mem::size_of::<Nat>() as Nat - x.leading_zeros()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -282,14 +284,14 @@ mod tests {
|
||||
#[test]
|
||||
fn field_ok() {
|
||||
let field = Field { pos: 3, len: 5 };
|
||||
assert_eq!(field.get(0x00000000), 0);
|
||||
assert_eq!(field.get(0x00000007), 0);
|
||||
assert_eq!(field.get(0x00000008), 1);
|
||||
assert_eq!(field.get(0x000000f8), 0x1f);
|
||||
assert_eq!(field.get(0x0000ff37), 6);
|
||||
let mut word = 0xffffffff;
|
||||
assert_eq!(field.get(Word(0x00000000)), 0);
|
||||
assert_eq!(field.get(Word(0x00000007)), 0);
|
||||
assert_eq!(field.get(Word(0x00000008)), 1);
|
||||
assert_eq!(field.get(Word(0x000000f8)), 0x1f);
|
||||
assert_eq!(field.get(Word(0x0000ff37)), 6);
|
||||
let mut word = Word(0xffffffff);
|
||||
field.set(&mut word, 3);
|
||||
assert_eq!(word, 0xffffff1f);
|
||||
assert_eq!(word, Word(0xffffff1f));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -298,25 +300,25 @@ mod tests {
|
||||
field: Field { pos: 3, len: 5 },
|
||||
value: 9,
|
||||
};
|
||||
assert!(!field.check(0x00000000));
|
||||
assert!(!field.check(0x0000ffff));
|
||||
assert!(field.check(0x00000048));
|
||||
assert!(field.check(0x0000ff4f));
|
||||
let mut word = 0xffffffff;
|
||||
assert!(!field.check(Word(0x00000000)));
|
||||
assert!(!field.check(Word(0x0000ffff)));
|
||||
assert!(field.check(Word(0x00000048)));
|
||||
assert!(field.check(Word(0x0000ff4f)));
|
||||
let mut word = Word(0xffffffff);
|
||||
field.set(&mut word);
|
||||
assert_eq!(word, 0xffffff4f);
|
||||
assert_eq!(word, Word(0xffffff4f));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bit_ok() {
|
||||
let bit = Bit { pos: 3 };
|
||||
assert!(bit.get(0x00000000));
|
||||
assert!(bit.get(0xfffffff7));
|
||||
assert!(!bit.get(0x00000008));
|
||||
assert!(!bit.get(0xffffffff));
|
||||
let mut word = 0xffffffff;
|
||||
assert!(bit.get(Word(0x00000000)));
|
||||
assert!(bit.get(Word(0xfffffff7)));
|
||||
assert!(!bit.get(Word(0x00000008)));
|
||||
assert!(!bit.get(Word(0xffffffff)));
|
||||
let mut word = Word(0xffffffff);
|
||||
bit.set(&mut word);
|
||||
assert_eq!(word, 0xfffffff7);
|
||||
assert_eq!(word, Word(0xfffffff7));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -324,15 +326,15 @@ mod tests {
|
||||
let field = Checksum {
|
||||
field: Field { pos: 3, len: 5 },
|
||||
};
|
||||
assert_eq!(field.get(0x00000000), Err(StoreError::InvalidStorage));
|
||||
assert_eq!(field.get(0xffffffff), Ok(31));
|
||||
assert_eq!(field.get(0xffffff07), Ok(0));
|
||||
assert_eq!(field.get(0xffffff0f), Ok(1));
|
||||
assert_eq!(field.get(0x00ffff67), Ok(4));
|
||||
assert_eq!(field.get(0x7fffff07), Err(StoreError::InvalidStorage));
|
||||
let mut word = 0x0fffffff;
|
||||
assert_eq!(field.get(Word(0x00000000)), Err(StoreError::InvalidStorage));
|
||||
assert_eq!(field.get(Word(0xffffffff)), Ok(31));
|
||||
assert_eq!(field.get(Word(0xffffff07)), Ok(0));
|
||||
assert_eq!(field.get(Word(0xffffff0f)), Ok(1));
|
||||
assert_eq!(field.get(Word(0x00ffff67)), Ok(4));
|
||||
assert_eq!(field.get(Word(0x7fffff07)), Err(StoreError::InvalidStorage));
|
||||
let mut word = Word(0x0fffffff);
|
||||
field.set(&mut word, 4);
|
||||
assert_eq!(word, 0x0fffff47);
|
||||
assert_eq!(word, Word(0x0fffff47));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -348,8 +348,6 @@
|
||||
#[macro_use]
|
||||
extern crate alloc;
|
||||
|
||||
#[macro_use]
|
||||
mod bitfield;
|
||||
mod buffer;
|
||||
mod format;
|
||||
#[cfg(feature = "std")]
|
||||
@@ -361,4 +359,28 @@ pub use self::buffer::{BufferCorruptFunction, BufferOptions, BufferStorage};
|
||||
#[cfg(feature = "std")]
|
||||
pub use self::model::{StoreModel, StoreOperation};
|
||||
pub use self::storage::{Storage, StorageError, StorageIndex, StorageResult};
|
||||
pub use self::store::{StoreError, StoreRatio, StoreResult, StoreUpdate};
|
||||
pub use self::store::{
|
||||
Store, StoreError, StoreHandle, StoreIter, StoreRatio, StoreResult, StoreUpdate,
|
||||
};
|
||||
|
||||
/// Internal representation of natural numbers.
|
||||
///
|
||||
/// In Rust natural numbers are represented as `usize`. However, internally we represent them as
|
||||
/// `u32`. This is done to preserve semantics across different targets. This is useful when tests
|
||||
/// run with `usize = u64` while the actual target has `usize = u32`.
|
||||
///
|
||||
/// To avoid too many conversions between `usize` and `Nat` which are necessary when interfacing
|
||||
/// with Rust, `usize` is used instead of `Nat` in code meant only for tests.
|
||||
///
|
||||
/// Currently, the store only supports targets with `usize = u32`.
|
||||
type Nat = u32;
|
||||
|
||||
/// Returns the internal representation of a Rust natural number.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if the conversion overflows.
|
||||
fn usize_to_nat(x: usize) -> Nat {
|
||||
use core::convert::TryFrom;
|
||||
Nat::try_from(x).unwrap()
|
||||
}
|
||||
|
||||
@@ -13,8 +13,8 @@
|
||||
// limitations under the License.
|
||||
|
||||
use crate::format::Format;
|
||||
use crate::{StoreError, StoreRatio, StoreResult, StoreUpdate};
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use crate::{usize_to_nat, StoreError, StoreRatio, StoreResult, StoreUpdate};
|
||||
use std::collections::HashMap;
|
||||
|
||||
/// Models the mutable operations of a store.
|
||||
///
|
||||
@@ -79,38 +79,23 @@ impl StoreModel {
|
||||
/// Returns the capacity according to the model.
|
||||
pub fn capacity(&self) -> StoreRatio {
|
||||
let total = self.format.total_capacity();
|
||||
let used: usize = self.content.values().map(|x| self.entry_size(x)).sum();
|
||||
let used = usize_to_nat(
|
||||
self.content
|
||||
.values()
|
||||
.map(|x| self.format.entry_size(x) as usize)
|
||||
.sum(),
|
||||
);
|
||||
StoreRatio { used, total }
|
||||
}
|
||||
|
||||
/// Applies a transaction.
|
||||
fn transaction(&mut self, updates: Vec<StoreUpdate>) -> StoreResult<()> {
|
||||
// Fail if too many updates.
|
||||
if updates.len() > self.format.max_updates() {
|
||||
return Err(StoreError::InvalidArgument);
|
||||
}
|
||||
// Fail if an update is invalid.
|
||||
if !updates.iter().all(|x| self.update_valid(x)) {
|
||||
return Err(StoreError::InvalidArgument);
|
||||
}
|
||||
// Fail if updates are not disjoint, i.e. there are duplicate keys.
|
||||
let keys: HashSet<_> = updates.iter().map(|x| x.key()).collect();
|
||||
if keys.len() != updates.len() {
|
||||
// Fail if the transaction is invalid.
|
||||
if self.format.transaction_valid(&updates).is_none() {
|
||||
return Err(StoreError::InvalidArgument);
|
||||
}
|
||||
// Fail if there is not enough capacity.
|
||||
let capacity = match updates.len() {
|
||||
// An empty transaction doesn't consume anything.
|
||||
0 => 0,
|
||||
// Transactions with a single update are optimized by avoiding a marker entry.
|
||||
1 => match &updates[0] {
|
||||
StoreUpdate::Insert { value, .. } => self.entry_size(value),
|
||||
// Transactions with a single update which is a removal don't consume anything.
|
||||
StoreUpdate::Remove { .. } => 0,
|
||||
},
|
||||
// A transaction consumes one word for the marker entry in addition to its updates.
|
||||
_ => 1 + updates.iter().map(|x| self.update_size(x)).sum::<usize>(),
|
||||
};
|
||||
let capacity = self.format.transaction_capacity(&updates) as usize;
|
||||
if self.capacity().remaining() < capacity {
|
||||
return Err(StoreError::NoCapacity);
|
||||
}
|
||||
@@ -130,7 +115,7 @@ impl StoreModel {
|
||||
|
||||
/// Applies a clear operation.
|
||||
fn clear(&mut self, min_key: usize) -> StoreResult<()> {
|
||||
if min_key > self.format.max_key() {
|
||||
if min_key > self.format.max_key() as usize {
|
||||
return Err(StoreError::InvalidArgument);
|
||||
}
|
||||
self.content.retain(|&k, _| k < min_key);
|
||||
@@ -144,25 +129,4 @@ impl StoreModel {
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns the word capacity of an update.
|
||||
fn update_size(&self, update: &StoreUpdate) -> usize {
|
||||
match update {
|
||||
StoreUpdate::Insert { value, .. } => self.entry_size(value),
|
||||
StoreUpdate::Remove { .. } => 1,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the word capacity of an entry.
|
||||
fn entry_size(&self, value: &[u8]) -> usize {
|
||||
1 + self.format.bytes_to_words(value.len())
|
||||
}
|
||||
|
||||
/// Returns whether an update is valid.
|
||||
fn update_valid(&self, update: &StoreUpdate) -> bool {
|
||||
update.key() <= self.format.max_key()
|
||||
&& update
|
||||
.value()
|
||||
.map_or(true, |x| x.len() <= self.format.max_value_len())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -37,9 +37,13 @@ pub type StorageResult<T> = Result<T, StorageError>;
|
||||
/// Abstracts a flash storage.
|
||||
pub trait Storage {
|
||||
/// The size of a word in bytes.
|
||||
///
|
||||
/// A word is the smallest unit of writable flash.
|
||||
fn word_size(&self) -> usize;
|
||||
|
||||
/// The size of a page in bytes.
|
||||
///
|
||||
/// A page is the smallest unit of erasable flash.
|
||||
fn page_size(&self) -> usize;
|
||||
|
||||
/// The number of pages in the storage.
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user