New metadata format (#539)

* new metadata format is used

* Update bootloader/src/main.rs

Co-authored-by: ztoked <zhalvorsen@google.com>

* splits the metadata signed and unsigned parts evenly

* fixes pylint

Co-authored-by: ztoked <zhalvorsen@google.com>
This commit is contained in:
kaczmarczyck
2022-08-31 14:35:45 +02:00
committed by GitHub
parent 932924ea85
commit 598c21071e
7 changed files with 190 additions and 260 deletions

View File

@@ -34,6 +34,7 @@ use rtt_target::{rprintln, rtt_init_print};
/// Size of a flash page in bytes. /// Size of a flash page in bytes.
const PAGE_SIZE: usize = 0x1000; const PAGE_SIZE: usize = 0x1000;
const METADATA_SIGN_OFFSET: usize = 0x800;
/// A flash page. /// A flash page.
type Page = [u8; PAGE_SIZE]; type Page = [u8; PAGE_SIZE];
@@ -48,21 +49,19 @@ unsafe fn read_page(address: usize) -> Page {
/// Parsed metadata for a firmware partition. /// Parsed metadata for a firmware partition.
struct Metadata { struct Metadata {
checksum: [u8; 32], checksum: [u8; 32],
timestamp: u32, _signature: [u8; 64],
version: u64,
address: u32, address: u32,
} }
impl Metadata {
pub const DATA_LEN: usize = 40;
}
/// Reads the metadata from a flash page. /// Reads the metadata from a flash page.
impl From<Page> for Metadata { impl From<Page> for Metadata {
fn from(page: Page) -> Self { fn from(page: Page) -> Self {
Metadata { Metadata {
checksum: page[0..32].try_into().unwrap(), checksum: page[0..32].try_into().unwrap(),
timestamp: LittleEndian::read_u32(&page[32..36]), _signature: page[32..96].try_into().unwrap(),
address: LittleEndian::read_u32(&page[36..Metadata::DATA_LEN]), version: LittleEndian::read_u64(&page[METADATA_SIGN_OFFSET..][..8]),
address: LittleEndian::read_u32(&page[METADATA_SIGN_OFFSET + 8..][..4]),
} }
} }
} }
@@ -76,15 +75,15 @@ struct BootPartition {
impl BootPartition { impl BootPartition {
const FIRMWARE_LENGTH: usize = 0x00040000; const FIRMWARE_LENGTH: usize = 0x00040000;
/// Reads the metadata, returns the timestamp if all checks pass. /// Reads the metadata, returns the firmware version if all checks pass.
pub fn read_timestamp(&self) -> Result<u32, ()> { pub fn read_version(&self) -> Result<u64, ()> {
let metadata_page = unsafe { read_page(self.metadata_address) }; let metadata_page = unsafe { read_page(self.metadata_address) };
let hash_value = self.compute_upgrade_hash(&metadata_page); let hash_value = self.compute_upgrade_hash(&metadata_page);
let metadata = Metadata::from(metadata_page); let metadata = Metadata::from(metadata_page);
if self.firmware_address != metadata.address as usize { if self.firmware_address != metadata.address as usize {
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
rprintln!( rprintln!(
"Firmware address mismatch: expected 0x{:08X}, metadata 0x{:08X}", "Partition address mismatch: expected 0x{:08X}, metadata 0x{:08X}",
self.firmware_address, self.firmware_address,
metadata.address as usize metadata.address as usize
); );
@@ -95,7 +94,7 @@ impl BootPartition {
rprintln!("Hash mismatch"); rprintln!("Hash mismatch");
return Err(()); return Err(());
} }
Ok(metadata.timestamp) Ok(metadata.version)
} }
/// Computes the SHA256 of metadata information and partition data. /// Computes the SHA256 of metadata information and partition data.
@@ -107,11 +106,14 @@ impl BootPartition {
debug_assert!(self.firmware_address % PAGE_SIZE == 0); debug_assert!(self.firmware_address % PAGE_SIZE == 0);
debug_assert!(BootPartition::FIRMWARE_LENGTH % PAGE_SIZE == 0); debug_assert!(BootPartition::FIRMWARE_LENGTH % PAGE_SIZE == 0);
let cc310 = crypto_cell::CryptoCell310::new(); let cc310 = crypto_cell::CryptoCell310::new();
cc310.update(&metadata_page[METADATA_SIGN_OFFSET..], false);
for page_offset in (0..BootPartition::FIRMWARE_LENGTH).step_by(PAGE_SIZE) { for page_offset in (0..BootPartition::FIRMWARE_LENGTH).step_by(PAGE_SIZE) {
let page = unsafe { read_page(self.firmware_address + page_offset) }; let page = unsafe { read_page(self.firmware_address + page_offset) };
cc310.update(&page, false); cc310.update(
&page,
page_offset + PAGE_SIZE == BootPartition::FIRMWARE_LENGTH,
);
} }
cc310.update(&metadata_page[32..Metadata::DATA_LEN], true);
cc310.finalize_and_clear() cc310.finalize_and_clear()
} }
@@ -156,12 +158,12 @@ fn main() -> ! {
}; };
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
rprintln!("Reading partition A"); rprintln!("Reading partition A");
let timestamp_a = partition_a.read_timestamp(); let version_a = partition_a.read_version();
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
rprintln!("Reading partition B"); rprintln!("Reading partition B");
let timestamp_b = partition_b.read_timestamp(); let version_b = partition_b.read_version();
match (timestamp_a, timestamp_b) { match (version_a, version_b) {
(Ok(t1), Ok(t2)) => { (Ok(t1), Ok(t2)) => {
if t1 >= t2 { if t1 >= t2 {
partition_a.boot() partition_a.boot()

View File

@@ -38,7 +38,7 @@ from tockloader import tockloader as loader
from tockloader.exceptions import TockLoaderException from tockloader.exceptions import TockLoaderException
import tools.configure import tools.configure
from tools.deploy_partition import create_metadata, pad_to from tools.deploy_partition import create_metadata, load_priv_key, pad_to
PROGRAMMERS = frozenset(("jlink", "openocd", "pyocd", "nordicdfu", "none")) PROGRAMMERS = frozenset(("jlink", "openocd", "pyocd", "nordicdfu", "none"))
@@ -622,7 +622,9 @@ class OpenSKInstaller:
# The kernel is already padded when read. # The kernel is already padded when read.
firmware_image = kernel + pad_to(app, app_size) firmware_image = kernel + pad_to(app, app_size)
metadata = create_metadata(firmware_image, board_props.kernel_address) priv_key = load_priv_key(self.args.upgrade_priv_key)
metadata = create_metadata(firmware_image, board_props.kernel_address,
self.args.version, priv_key)
if self.args.verbose_build: if self.args.verbose_build:
info(f"Metadata bytes: {metadata}") info(f"Metadata bytes: {metadata}")
@@ -1131,6 +1133,22 @@ if __name__ == "__main__":
help=("Don't check that patches are in sync with their submodules."), help=("Don't check that patches are in sync with their submodules."),
) )
main_parser.add_argument(
"--private-key",
type=str,
default="crypto_data/opensk_upgrade.key",
dest="upgrade_priv_key",
help=("PEM file for signing the firmware."),
)
main_parser.add_argument(
"--version",
type=int,
default=-1,
dest="version",
help=("Firmware version that is built."),
)
main_parser.set_defaults(features=["with_ctap1"]) main_parser.set_defaults(features=["with_ctap1"])
# Start parsing to know if we're going to list things or not. # Start parsing to know if we're going to list things or not.

View File

@@ -55,15 +55,15 @@ There are variants of the board that introduce A/B partitions for upgrading the
firmware. You can bootstrap an upgradable board using one of the two commands: firmware. You can bootstrap an upgradable board using one of the two commands:
```shell ```shell
./deploy.py --board=nrf52840dk_opensk_a --opensk ./deploy.py --board=nrf52840dk_opensk_a --opensk --version=0
./deploy.py --board=nrf52840dk_opensk_b --opensk ./deploy.py --board=nrf52840dk_opensk_b --opensk --version=0
``` ```
Afterwards, you can upgrade the other partition with Afterwards, you can upgrade the other partition with
```shell ```shell
./tools/perform_upgrade.sh nrf52840dk_opensk_b ./tools/perform_upgrade.sh nrf52840dk_opensk_b --version=1
./tools/perform_upgrade.sh nrf52840dk_opensk_a ./tools/perform_upgrade.sh nrf52840dk_opensk_a --version=1
``` ```
respectively. You can only upgrade the partition that is not currently running, respectively. You can only upgrade the partition that is not currently running,
@@ -75,6 +75,6 @@ If you deploy with `--vendor-hid`, also add this flag to `perform_upgrade.sh`,
for example: for example:
```shell ```shell
./deploy.py --board=nrf52840dk_opensk_a --opensk --vendor-hid ./deploy.py --board=nrf52840dk_opensk_a --opensk --version=0 --vendor-hid
./tools/perform_upgrade.sh nrf52840dk_opensk_b --vendor-hid ./tools/perform_upgrade.sh nrf52840dk_opensk_b --version=1 --vendor-hid
``` ```

View File

@@ -15,11 +15,10 @@
use super::data_formats::{ use super::data_formats::{
extract_array, extract_bool, extract_byte_string, extract_map, extract_text_string, extract_array, extract_bool, extract_byte_string, extract_map, extract_text_string,
extract_unsigned, ok_or_missing, ClientPinSubCommand, ConfigSubCommand, ConfigSubCommandParams, extract_unsigned, ok_or_missing, ClientPinSubCommand, ConfigSubCommand, ConfigSubCommandParams,
CoseKey, CoseSignature, CredentialManagementSubCommand, CoseKey, CredentialManagementSubCommand, CredentialManagementSubCommandParameters,
CredentialManagementSubCommandParameters, GetAssertionExtensions, GetAssertionOptions, GetAssertionExtensions, GetAssertionOptions, MakeCredentialExtensions, MakeCredentialOptions,
MakeCredentialExtensions, MakeCredentialOptions, PinUvAuthProtocol, PinUvAuthProtocol, PublicKeyCredentialDescriptor, PublicKeyCredentialParameter,
PublicKeyCredentialDescriptor, PublicKeyCredentialParameter, PublicKeyCredentialRpEntity, PublicKeyCredentialRpEntity, PublicKeyCredentialUserEntity, SetMinPinLengthParams,
PublicKeyCredentialUserEntity, SetMinPinLengthParams,
}; };
use super::status_code::Ctap2StatusCode; use super::status_code::Ctap2StatusCode;
use super::{cbor_read, key_material}; use super::{cbor_read, key_material};
@@ -596,7 +595,6 @@ pub struct AuthenticatorVendorUpgradeParameters {
pub address: Option<usize>, pub address: Option<usize>,
pub data: Vec<u8>, pub data: Vec<u8>,
pub hash: Vec<u8>, pub hash: Vec<u8>,
pub signature: Option<CoseSignature>,
} }
impl TryFrom<cbor::Value> for AuthenticatorVendorUpgradeParameters { impl TryFrom<cbor::Value> for AuthenticatorVendorUpgradeParameters {
@@ -608,7 +606,6 @@ impl TryFrom<cbor::Value> for AuthenticatorVendorUpgradeParameters {
0x01 => address, 0x01 => address,
0x02 => data, 0x02 => data,
0x03 => hash, 0x03 => hash,
0x04 => signature,
} = extract_map(cbor_value)?; } = extract_map(cbor_value)?;
} }
let address = address let address = address
@@ -617,12 +614,10 @@ impl TryFrom<cbor::Value> for AuthenticatorVendorUpgradeParameters {
.map(|u| u as usize); .map(|u| u as usize);
let data = extract_byte_string(ok_or_missing(data)?)?; let data = extract_byte_string(ok_or_missing(data)?)?;
let hash = extract_byte_string(ok_or_missing(hash)?)?; let hash = extract_byte_string(ok_or_missing(hash)?)?;
let signature = signature.map(CoseSignature::try_from).transpose()?;
Ok(AuthenticatorVendorUpgradeParameters { Ok(AuthenticatorVendorUpgradeParameters {
address, address,
data, data,
hash, hash,
signature,
}) })
} }
} }
@@ -631,7 +626,7 @@ impl TryFrom<cbor::Value> for AuthenticatorVendorUpgradeParameters {
mod test { mod test {
use super::super::data_formats::{ use super::super::data_formats::{
AuthenticatorTransport, PublicKeyCredentialRpEntity, PublicKeyCredentialType, AuthenticatorTransport, PublicKeyCredentialRpEntity, PublicKeyCredentialType,
PublicKeyCredentialUserEntity, SignatureAlgorithm, PublicKeyCredentialUserEntity,
}; };
use super::super::ES256_CRED_PARAM; use super::super::ES256_CRED_PARAM;
use super::*; use super::*;
@@ -1096,10 +1091,6 @@ mod test {
let cbor_value = cbor_map! { let cbor_value = cbor_map! {
0x02 => [0xFF; 0x100], 0x02 => [0xFF; 0x100],
0x03 => [0x44; 32], 0x03 => [0x44; 32],
0x04 => cbor_map! {
"alg" => -7,
"signature" => [0x55; 64],
},
}; };
assert_eq!( assert_eq!(
AuthenticatorVendorUpgradeParameters::try_from(cbor_value), AuthenticatorVendorUpgradeParameters::try_from(cbor_value),
@@ -1107,14 +1098,10 @@ mod test {
address: None, address: None,
data: vec![0xFF; 0x100], data: vec![0xFF; 0x100],
hash: vec![0x44; 32], hash: vec![0x44; 32],
signature: Some(CoseSignature {
algorithm: SignatureAlgorithm::Es256,
bytes: [0x55; 64],
}),
}) })
); );
// Valid without signature // Valid with address
let cbor_value = cbor_map! { let cbor_value = cbor_map! {
0x01 => 0x1000, 0x01 => 0x1000,
0x02 => [0xFF; 0x100], 0x02 => [0xFF; 0x100],
@@ -1126,7 +1113,6 @@ mod test {
address: Some(0x1000), address: Some(0x1000),
data: vec![0xFF; 0x100], data: vec![0xFF; 0x100],
hash: vec![0x44; 32], hash: vec![0x44; 32],
signature: None,
}) })
); );
} }

View File

@@ -912,53 +912,6 @@ impl TryFrom<CoseKey> for ecdsa::PubKey {
} }
} }
/// Data structure for receiving a signature.
///
/// See https://datatracker.ietf.org/doc/html/rfc8152#appendix-C.1.1 for reference.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CoseSignature {
pub algorithm: SignatureAlgorithm,
pub bytes: [u8; ecdsa::Signature::BYTES_LENGTH],
}
impl TryFrom<cbor::Value> for CoseSignature {
type Error = Ctap2StatusCode;
fn try_from(cbor_value: cbor::Value) -> Result<Self, Ctap2StatusCode> {
destructure_cbor_map! {
let {
"alg" => algorithm,
"signature" => bytes,
} = extract_map(cbor_value)?;
}
let algorithm = SignatureAlgorithm::try_from(ok_or_missing(algorithm)?)?;
let bytes = extract_byte_string(ok_or_missing(bytes)?)?;
if bytes.len() != ecdsa::Signature::BYTES_LENGTH {
return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER);
}
Ok(CoseSignature {
algorithm,
bytes: *array_ref![bytes.as_slice(), 0, ecdsa::Signature::BYTES_LENGTH],
})
}
}
impl TryFrom<CoseSignature> for ecdsa::Signature {
type Error = Ctap2StatusCode;
fn try_from(cose_signature: CoseSignature) -> Result<Self, Ctap2StatusCode> {
match cose_signature.algorithm {
SignatureAlgorithm::Es256 => ecdsa::Signature::from_bytes(&cose_signature.bytes)
.ok_or(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER),
#[cfg(feature = "ed25519")]
SignatureAlgorithm::Eddsa => Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM),
SignatureAlgorithm::Unknown => Err(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)] #[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "fuzz", derive(Arbitrary))] #[cfg_attr(feature = "fuzz", derive(Arbitrary))]
pub enum PinUvAuthProtocol { pub enum PinUvAuthProtocol {
@@ -1292,7 +1245,6 @@ mod test {
cbor_array, cbor_bool, cbor_bytes, cbor_bytes_lit, cbor_false, cbor_int, cbor_null, cbor_array, cbor_bool, cbor_bytes, cbor_bytes_lit, cbor_false, cbor_int, cbor_null,
cbor_text, cbor_unsigned, cbor_text, cbor_unsigned,
}; };
use crypto::sha256::Sha256;
use rng256::Rng256; use rng256::Rng256;
#[test] #[test]
@@ -2003,64 +1955,6 @@ mod test {
assert_eq!(cose_key.algorithm, ES256_ALGORITHM); assert_eq!(cose_key.algorithm, ES256_ALGORITHM);
} }
#[test]
fn test_from_into_cose_signature() {
let mut env = TestEnv::new();
let sk = crypto::ecdsa::SecKey::gensk(env.rng());
let dummy_signature = sk.sign_rfc6979::<Sha256>(&[]);
let mut bytes = [0; ecdsa::Signature::BYTES_LENGTH];
dummy_signature.to_bytes(&mut bytes);
let cbor_value = cbor_map! {
"alg" => ES256_ALGORITHM,
"signature" => bytes,
};
let cose_signature = CoseSignature::try_from(cbor_value).unwrap();
let created_signature = crypto::ecdsa::Signature::try_from(cose_signature).unwrap();
let mut created_bytes = [0; ecdsa::Signature::BYTES_LENGTH];
created_signature.to_bytes(&mut created_bytes);
assert_eq!(bytes[..], created_bytes[..]);
}
#[test]
fn test_cose_signature_wrong_algorithm() {
let mut env = TestEnv::new();
let sk = crypto::ecdsa::SecKey::gensk(env.rng());
let dummy_signature = sk.sign_rfc6979::<Sha256>(&[]);
let mut bytes = [0; ecdsa::Signature::BYTES_LENGTH];
dummy_signature.to_bytes(&mut bytes);
let cbor_value = cbor_map! {
"alg" => -1, // unused algorithm
"signature" => bytes,
};
let cose_signature = CoseSignature::try_from(cbor_value).unwrap();
let created_signature = crypto::ecdsa::Signature::try_from(cose_signature);
// Can not compare directly, since ecdsa::Signature does not implement Debug.
assert_eq!(
created_signature.err(),
Some(Ctap2StatusCode::CTAP2_ERR_UNSUPPORTED_ALGORITHM)
);
}
#[test]
fn test_cose_signature_wrong_signature_length() {
let cbor_value = cbor_map! {
"alg" => ES256_ALGORITHM,
"signature" => [0; ecdsa::Signature::BYTES_LENGTH - 1],
};
assert_eq!(
CoseSignature::try_from(cbor_value),
Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)
);
let cbor_value = cbor_map! {
"alg" => ES256_ALGORITHM,
"signature" => [0; ecdsa::Signature::BYTES_LENGTH + 1],
};
assert_eq!(
CoseSignature::try_from(cbor_value),
Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)
);
}
#[test] #[test]
fn test_from_pin_uv_auth_protocol() { fn test_from_pin_uv_auth_protocol() {
let cbor_protocol: cbor::Value = cbor_int!(0x01); let cbor_protocol: cbor::Value = cbor_int!(0x01);

View File

@@ -47,11 +47,10 @@ use self::credential_id::{
use self::credential_management::process_credential_management; use self::credential_management::process_credential_management;
use self::crypto_wrapper::PrivateKey; use self::crypto_wrapper::PrivateKey;
use self::data_formats::{ use self::data_formats::{
AuthenticatorTransport, CoseKey, CoseSignature, CredentialProtectionPolicy, AuthenticatorTransport, CoseKey, CredentialProtectionPolicy, EnterpriseAttestationMode,
EnterpriseAttestationMode, GetAssertionExtensions, PackedAttestationStatement, GetAssertionExtensions, PackedAttestationStatement, PinUvAuthProtocol,
PinUvAuthProtocol, PublicKeyCredentialDescriptor, PublicKeyCredentialParameter, PublicKeyCredentialDescriptor, PublicKeyCredentialParameter, PublicKeyCredentialSource,
PublicKeyCredentialSource, PublicKeyCredentialType, PublicKeyCredentialUserEntity, PublicKeyCredentialType, PublicKeyCredentialUserEntity, SignatureAlgorithm,
SignatureAlgorithm,
}; };
use self::hid::{ChannelID, CtapHid, CtapHidCommand, KeepaliveStatus, ProcessedPacket}; use self::hid::{ChannelID, CtapHid, CtapHidCommand, KeepaliveStatus, ProcessedPacket};
use self::large_blobs::LargeBlobs; use self::large_blobs::LargeBlobs;
@@ -77,7 +76,7 @@ use alloc::string::{String, ToString};
use alloc::vec; use alloc::vec;
use alloc::vec::Vec; use alloc::vec::Vec;
use arrayref::array_ref; use arrayref::array_ref;
use byteorder::{BigEndian, ByteOrder}; use byteorder::{BigEndian, ByteOrder, LittleEndian};
use core::convert::TryFrom; use core::convert::TryFrom;
use crypto::hmac::hmac_256; use crypto::hmac::hmac_256;
use crypto::sha256::Sha256; use crypto::sha256::Sha256;
@@ -212,45 +211,61 @@ fn truncate_to_char_boundary(s: &str, mut max: usize) -> &str {
/// Parses the metadata of an upgrade, and checks its correctness. /// Parses the metadata of an upgrade, and checks its correctness.
/// ///
/// Returns the hash over the upgrade, including partition and some metadata. /// The metadata is a page starting with:
/// The metadata consists of: /// - 32 B upgrade hash (SHA256)
/// - 32B upgrade hash (SHA256) /// - 64 B signature,
/// - 4B timestamp (little endian encoding) /// that are not signed over. The second part is included in the signature with
/// - 4B partition address (little endian encoding) /// - 8 B version and
/// The upgrade hash is computed over the firmware image and all metadata, /// - 4 B partition address in little endian encoding
/// except the hash itself. /// written at METADATA_SIGN_OFFSET.
///
/// Checks hash and signature correctness, and whether the partition offset matches.
fn parse_metadata( fn parse_metadata(
upgrade_locations: &impl UpgradeStorage, upgrade_locations: &impl UpgradeStorage,
public_key_bytes: &[u8],
metadata: &[u8], metadata: &[u8],
) -> Result<[u8; 32], Ctap2StatusCode> { ) -> Result<(), Ctap2StatusCode> {
const METADATA_LEN: usize = 40; const METADATA_LEN: usize = 0x1000;
const METADATA_SIGN_OFFSET: usize = 0x800;
if metadata.len() != METADATA_LEN { if metadata.len() != METADATA_LEN {
return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER); return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER);
} }
let metadata_address = LittleEndian::read_u32(&metadata[METADATA_SIGN_OFFSET + 8..][..4]);
if metadata_address as usize != upgrade_locations.partition_address() {
return Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER);
}
// The hash implementation handles this in chunks, so no memory issues. // The hash implementation handles this in chunks, so no memory issues.
let partition_slice = upgrade_locations let partition_slice = upgrade_locations
.read_partition(0, upgrade_locations.partition_length()) .read_partition(0, upgrade_locations.partition_length())
.map_err(|_| Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?; .map_err(|_| Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?;
let mut hasher = Sha256::new(); let mut hasher = Sha256::new();
hasher.update(&metadata[METADATA_SIGN_OFFSET..]);
hasher.update(partition_slice); hasher.update(partition_slice);
hasher.update(&metadata[32..METADATA_LEN]);
let computed_hash = hasher.finalize(); let computed_hash = hasher.finalize();
if &computed_hash != array_ref!(metadata, 0, 32) { if &computed_hash != array_ref!(metadata, 0, 32) {
return Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE); return Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE);
} }
Ok(computed_hash)
verify_signature(
array_ref!(metadata, 32, 64),
public_key_bytes,
&computed_hash,
)?;
Ok(())
} }
/// Verifies the signature over the given hash. /// Verifies the signature over the given hash.
/// ///
/// The public key is COSE encoded, and the hash is a SHA256. /// The public key is COSE encoded, and the hash is a SHA256.
fn verify_signature( fn verify_signature(
signature: Option<CoseSignature>, signature_bytes: &[u8; 64],
public_key_bytes: &[u8], public_key_bytes: &[u8],
signed_hash: &[u8; 32], signed_hash: &[u8; 32],
) -> Result<(), Ctap2StatusCode> { ) -> Result<(), Ctap2StatusCode> {
let signature = let signature = ecdsa::Signature::from_bytes(signature_bytes)
ecdsa::Signature::try_from(signature.ok_or(Ctap2StatusCode::CTAP2_ERR_MISSING_PARAMETER)?)?; .ok_or(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)?;
let cbor_public_key = cbor_read(public_key_bytes)?; let cbor_public_key = cbor_read(public_key_bytes)?;
let cose_key = CoseKey::try_from(cbor_public_key)?; let cose_key = CoseKey::try_from(cbor_public_key)?;
let public_key = ecdsa::PubKey::try_from(cose_key)?; let public_key = ecdsa::PubKey::try_from(cose_key)?;
@@ -1454,7 +1469,6 @@ impl CtapState {
address, address,
data, data,
hash, hash,
signature,
} = params; } = params;
let upgrade_locations = env let upgrade_locations = env
.upgrade_storage() .upgrade_storage()
@@ -1468,9 +1482,7 @@ impl CtapState {
.map_err(|_| Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)? .map_err(|_| Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)?
} else { } else {
// Compares the hash inside the metadata to the actual hash. // Compares the hash inside the metadata to the actual hash.
let upgrade_hash = parse_metadata(upgrade_locations, &data)?; parse_metadata(upgrade_locations, key_material::UPGRADE_PUBLIC_KEY, &data)?;
// Only signed firmware images may be fully written.
verify_signature(signature, key_material::UPGRADE_PUBLIC_KEY, &upgrade_hash)?;
// Write the metadata page after verifying that its hash is signed. // Write the metadata page after verifying that its hash is signed.
upgrade_locations upgrade_locations
.write_metadata(&data) .write_metadata(&data)
@@ -3456,37 +3468,64 @@ mod test {
#[test] #[test]
fn test_parse_metadata() { fn test_parse_metadata() {
let mut env = TestEnv::new(); let mut env = TestEnv::new();
// The test buffer starts fully erased with 0xFF bytes. let private_key = crypto::ecdsa::SecKey::gensk(env.rng());
// The compiler issues an incorrect warning. let upgrade_locations = env.upgrade_storage().unwrap();
#[allow(unused_mut)]
let mut upgrade_locations = env.upgrade_storage().unwrap(); const METADATA_LEN: usize = 0x1000;
const METADATA_SIGN_OFFSET: usize = 0x800;
let mut metadata = vec![0xFF; METADATA_LEN];
LittleEndian::write_u32(&mut metadata[METADATA_SIGN_OFFSET + 8..][..4], 0x60000);
let partition_length = upgrade_locations.partition_length();
let mut signed_over_data = metadata[METADATA_SIGN_OFFSET..].to_vec();
signed_over_data.extend(
upgrade_locations
.read_partition(0, partition_length)
.unwrap(),
);
let signed_hash = Sha256::hash(&signed_over_data);
metadata[..32].copy_from_slice(&signed_hash);
let signature = private_key.sign_rfc6979::<Sha256>(&signed_over_data);
let mut signature_bytes = [0; ecdsa::Signature::BYTES_LENGTH];
signature.to_bytes(&mut signature_bytes);
metadata[32..96].copy_from_slice(&signature_bytes);
let public_key = private_key.genpk();
let mut public_key_bytes = vec![];
cbor_write(
cbor::Value::from(CoseKey::from(public_key)),
&mut public_key_bytes,
)
.unwrap();
// Partition of 0x40000 bytes and 8 bytes metadata are hashed.
let hashed_data = vec![0xFF; 0x40000 + 8];
let expected_hash = Sha256::hash(&hashed_data);
let mut metadata = vec![0xFF; 40];
metadata[..32].copy_from_slice(&expected_hash);
assert_eq!( assert_eq!(
parse_metadata(upgrade_locations, &metadata), parse_metadata(upgrade_locations, &public_key_bytes, &metadata),
Ok(expected_hash) Ok(())
); );
// Any manipulation of data fails. // Any manipulation of data fails.
metadata[32] = 0x88; metadata[METADATA_SIGN_OFFSET] = 0x88;
assert_eq!( assert_eq!(
parse_metadata(upgrade_locations, &metadata), parse_metadata(upgrade_locations, &public_key_bytes, &metadata),
Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)
); );
metadata[32] = 0xFF; metadata[METADATA_SIGN_OFFSET] = 0xFF;
metadata[0] ^= 0x01; metadata[0] ^= 0x01;
assert_eq!( assert_eq!(
parse_metadata(upgrade_locations, &metadata), parse_metadata(upgrade_locations, &public_key_bytes, &metadata),
Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)
); );
metadata[0] ^= 0x01; metadata[0] ^= 0x01;
metadata[32] ^= 0x01;
assert_eq!(
parse_metadata(upgrade_locations, &public_key_bytes, &metadata),
Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)
);
metadata[32] ^= 0x01;
upgrade_locations.write_partition(0, &[0x88; 1]).unwrap(); upgrade_locations.write_partition(0, &[0x88; 1]).unwrap();
assert_eq!( assert_eq!(
parse_metadata(upgrade_locations, &metadata), parse_metadata(upgrade_locations, &public_key_bytes, &metadata),
Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)
); );
} }
@@ -3501,10 +3540,6 @@ mod test {
let mut signature_bytes = [0; ecdsa::Signature::BYTES_LENGTH]; let mut signature_bytes = [0; ecdsa::Signature::BYTES_LENGTH];
signature.to_bytes(&mut signature_bytes); signature.to_bytes(&mut signature_bytes);
let cose_signature = CoseSignature {
algorithm: SignatureAlgorithm::Es256,
bytes: signature_bytes,
};
let public_key = private_key.genpk(); let public_key = private_key.genpk();
let mut public_key_bytes = vec![]; let mut public_key_bytes = vec![];
@@ -3515,34 +3550,22 @@ mod test {
.unwrap(); .unwrap();
assert_eq!( assert_eq!(
verify_signature( verify_signature(&signature_bytes, &public_key_bytes, &signed_hash),
Some(cose_signature.clone()),
&public_key_bytes,
&signed_hash
),
Ok(()) Ok(())
); );
assert_eq!( assert_eq!(
verify_signature(Some(cose_signature.clone()), &public_key_bytes, &[0x55; 32]), verify_signature(&signature_bytes, &public_key_bytes, &[0x55; 32]),
Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)
); );
public_key_bytes[0] ^= 0x01; public_key_bytes[0] ^= 0x01;
assert_eq!( assert_eq!(
verify_signature(Some(cose_signature), &public_key_bytes, &signed_hash), verify_signature(&signature_bytes, &public_key_bytes, &signed_hash),
Err(Ctap2StatusCode::CTAP2_ERR_INVALID_CBOR) Err(Ctap2StatusCode::CTAP2_ERR_INVALID_CBOR)
); );
public_key_bytes[0] ^= 0x01; public_key_bytes[0] ^= 0x01;
assert_eq!(
verify_signature(None, &public_key_bytes, &signed_hash),
Err(Ctap2StatusCode::CTAP2_ERR_MISSING_PARAMETER)
);
signature_bytes[0] ^= 0x01; signature_bytes[0] ^= 0x01;
let cose_signature = CoseSignature {
algorithm: SignatureAlgorithm::Es256,
bytes: signature_bytes,
};
assert_eq!( assert_eq!(
verify_signature(Some(cose_signature), &public_key_bytes, &signed_hash), verify_signature(&signature_bytes, &public_key_bytes, &signed_hash),
Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE) Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)
); );
} }
@@ -3555,38 +3578,37 @@ mod test {
let mut env = TestEnv::new(); let mut env = TestEnv::new();
let private_key = crypto::ecdsa::SecKey::gensk(env.rng()); let private_key = crypto::ecdsa::SecKey::gensk(env.rng());
let mut ctap_state = CtapState::new(&mut env, CtapInstant::new(0)); let mut ctap_state = CtapState::new(&mut env, CtapInstant::new(0));
const METADATA_LEN: usize = 40; const METADATA_LEN: usize = 0x1000;
const METADATA_SIGN_OFFSET: usize = 0x800;
let mut metadata = vec![0xFF; METADATA_LEN];
LittleEndian::write_u32(&mut metadata[METADATA_SIGN_OFFSET + 8..][..4], 0x60000);
let data = vec![0xFF; 0x1000]; let data = vec![0xFF; 0x1000];
let hash = Sha256::hash(&data).to_vec(); let hash = Sha256::hash(&data).to_vec();
let upgrade_locations = env.upgrade_storage().unwrap(); let upgrade_locations = env.upgrade_storage().unwrap();
let partition_length = upgrade_locations.partition_length(); let partition_length = upgrade_locations.partition_length();
let mut signed_over_data = upgrade_locations let mut signed_over_data = metadata[METADATA_SIGN_OFFSET..].to_vec();
.read_partition(0, partition_length) signed_over_data.extend(
.unwrap() upgrade_locations
.to_vec(); .read_partition(0, partition_length)
signed_over_data.extend(&[0xFF; METADATA_LEN - 32]); .unwrap(),
);
let signed_hash = Sha256::hash(&signed_over_data); let signed_hash = Sha256::hash(&signed_over_data);
let mut metadata = vec![0xFF; METADATA_LEN];
metadata[..32].copy_from_slice(&signed_hash);
let metadata_hash = Sha256::hash(&metadata).to_vec();
metadata[..32].copy_from_slice(&signed_hash);
let signature = private_key.sign_rfc6979::<Sha256>(&signed_over_data); let signature = private_key.sign_rfc6979::<Sha256>(&signed_over_data);
let mut signature_bytes = [0; ecdsa::Signature::BYTES_LENGTH]; let mut signature_bytes = [0; ecdsa::Signature::BYTES_LENGTH];
signature.to_bytes(&mut signature_bytes); signature.to_bytes(&mut signature_bytes);
let cose_signature = CoseSignature { metadata[32..96].copy_from_slice(&signature_bytes);
algorithm: SignatureAlgorithm::Es256, let metadata_hash = Sha256::hash(&metadata).to_vec();
bytes: signature_bytes,
};
// Write to partition and metadata. // Write to partition.
let response = ctap_state.process_vendor_upgrade( let response = ctap_state.process_vendor_upgrade(
&mut env, &mut env,
AuthenticatorVendorUpgradeParameters { AuthenticatorVendorUpgradeParameters {
address: Some(0x20000), address: Some(0x20000),
data: data.clone(), data: data.clone(),
hash: hash.clone(), hash: hash.clone(),
signature: None,
}, },
); );
assert_eq!(response, Ok(ResponseData::AuthenticatorVendorUpgrade)); assert_eq!(response, Ok(ResponseData::AuthenticatorVendorUpgrade));
@@ -3599,7 +3621,6 @@ mod test {
address: None, address: None,
data: metadata.clone(), data: metadata.clone(),
hash: metadata_hash.clone(), hash: metadata_hash.clone(),
signature: Some(cose_signature.clone()),
}, },
); );
assert_eq!(response, Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)); assert_eq!(response, Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE));
@@ -3611,7 +3632,6 @@ mod test {
address: None, address: None,
data: metadata[..METADATA_LEN - 1].to_vec(), data: metadata[..METADATA_LEN - 1].to_vec(),
hash: metadata_hash, hash: metadata_hash,
signature: Some(cose_signature),
}, },
); );
assert_eq!(response, Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)); assert_eq!(response, Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER));
@@ -3623,7 +3643,6 @@ mod test {
address: Some(0x40000), address: Some(0x40000),
data: data.clone(), data: data.clone(),
hash, hash,
signature: None,
}, },
); );
assert_eq!(response, Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER)); assert_eq!(response, Err(Ctap2StatusCode::CTAP1_ERR_INVALID_PARAMETER));
@@ -3635,7 +3654,6 @@ mod test {
address: Some(0x20000), address: Some(0x20000),
data, data,
hash: [0xEE; 32].to_vec(), hash: [0xEE; 32].to_vec(),
signature: None,
}, },
); );
assert_eq!(response, Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE)); assert_eq!(response, Err(Ctap2StatusCode::CTAP2_ERR_INTEGRITY_FAILURE));
@@ -3655,7 +3673,6 @@ mod test {
address: Some(0), address: Some(0),
data, data,
hash, hash,
signature: None,
}, },
); );
assert_eq!(response, Err(Ctap2StatusCode::CTAP1_ERR_INVALID_COMMAND)); assert_eq!(response, Err(Ctap2StatusCode::CTAP1_ERR_INVALID_COMMAND));

View File

@@ -20,7 +20,6 @@ from __future__ import division
from __future__ import print_function from __future__ import print_function
import argparse import argparse
import datetime
import hashlib import hashlib
import os import os
import struct import struct
@@ -44,6 +43,7 @@ OPENSK_VID_PID = (0x1915, 0x521F)
OPENSK_VENDOR_UPGRADE = 0x42 OPENSK_VENDOR_UPGRADE = 0x42
OPENSK_VENDOR_UPGRADE_INFO = 0x43 OPENSK_VENDOR_UPGRADE_INFO = 0x43
PAGE_SIZE = 0x1000 PAGE_SIZE = 0x1000
METADATA_SIGN_OFFSET = 0x800
KERNEL_SIZE = 0x20000 KERNEL_SIZE = 0x20000
APP_SIZE = 0x20000 APP_SIZE = 0x20000
PARTITION_ADDRESS = { PARTITION_ADDRESS = {
@@ -54,7 +54,15 @@ ES256_ALGORITHM = -7
ARCH = "thumbv7em-none-eabi" ARCH = "thumbv7em-none-eabi"
def create_metadata(firmware_image: bytes, partition_address: int) -> bytes: def hash_message(message: bytes) -> bytes:
"""Uses SHA256 to hash a message."""
sha256_hash = hashlib.sha256()
sha256_hash.update(message)
return sha256_hash.digest()
def create_metadata(firmware_image: bytes, partition_address: int, version: int,
priv_key: Any) -> bytes:
"""Creates the matching metadata for the given firmware. """Creates the matching metadata for the given firmware.
The metadata consists of a timestamp, the expected address and a hash of The metadata consists of a timestamp, the expected address and a hash of
@@ -65,25 +73,26 @@ def create_metadata(firmware_image: bytes, partition_address: int) -> bytes:
partition_address: The address to be written as a metadata property. partition_address: The address to be written as a metadata property.
Returns: Returns:
A byte array consisting of 32B hash, 4B timestamp and 4B partition address A byte array of page size, consisting of
in little endian encoding. - 32 B hash,
- 64 B signature,
at the beginning and
- 8 B version and
- 4 B partition address in little endian encoding
after METADATA_SIGN_OFFSET. All other bytes are 0xFF.
""" """
t = datetime.datetime.utcnow().timestamp() if version < 0 or version >= 2**63:
timestamp = struct.pack("<I", int(t)) fatal("The version must fit into an unsigned integer with 63 bit.\n"
"Please pass it using --version")
version_bytes = struct.pack("<Q", version)
partition_start = struct.pack("<I", partition_address) partition_start = struct.pack("<I", partition_address)
sha256_hash = hashlib.sha256() # Prefix sizes that are a multiple of 64 suit our bootloader's SHA.
sha256_hash.update(firmware_image) signed_metadata = pad_to(version_bytes + partition_start,
sha256_hash.update(timestamp) PAGE_SIZE - METADATA_SIGN_OFFSET)
sha256_hash.update(partition_start) signed_data = signed_metadata + firmware_image
checksum = sha256_hash.digest() checksum = hash_message(signed_data)
return checksum + timestamp + partition_start signature = sign_firmware(signed_data, priv_key)
return pad_to(checksum + signature, METADATA_SIGN_OFFSET) + signed_metadata
def hash_message(message: bytes) -> bytes:
"""Uses SHA256 to hash a message."""
sha256_hash = hashlib.sha256()
sha256_hash.update(message)
return sha256_hash.digest()
def check_info(partition_address: int, authenticator: Any): def check_info(partition_address: int, authenticator: Any):
@@ -95,7 +104,8 @@ def check_info(partition_address: int, authenticator: Any):
data={}, data={},
) )
if result[0x01] != partition_address: if result[0x01] != partition_address:
fatal("Identifiers do not match.") fatal(f"Identifiers do not match, received 0x{result[0x01]:0x}, "
f"expected 0x{partition_address:0x}.")
except ctap.CtapError as ex: except ctap.CtapError as ex:
fatal(f"Failed to read OpenSK upgrade info (error: {ex})") fatal(f"Failed to read OpenSK upgrade info (error: {ex})")
@@ -163,19 +173,14 @@ def sign_firmware(data: bytes, priv_key: Any) -> bytes:
def main(args): def main(args):
colorama.init() colorama.init()
if not args.priv_key:
fatal("Please pass in a private key file using --private-key.")
firmware_image = generate_firmware_image(args.board) firmware_image = generate_firmware_image(args.board)
partition_address = PARTITION_ADDRESS[args.board] partition_address = PARTITION_ADDRESS[args.board]
metadata = create_metadata(firmware_image, partition_address)
if not args.priv_key:
fatal("Please pass in a private key file using --private-key.")
priv_key = load_priv_key(args.priv_key) priv_key = load_priv_key(args.priv_key)
signed_data = firmware_image + metadata[32:40] metadata = create_metadata(firmware_image, partition_address, args.version,
signature = { priv_key)
"alg": ES256_ALGORITHM,
"signature": sign_firmware(signed_data, priv_key)
}
if args.use_vendor_hid: if args.use_vendor_hid:
patcher = patch.object(hid.base, "FIDO_USAGE_PAGE", 0xFF00) patcher = patch.object(hid.base, "FIDO_USAGE_PAGE", 0xFF00)
@@ -206,11 +211,13 @@ def main(args):
) )
info("Writing metadata...") info("Writing metadata...")
cbor_data = {2: metadata, 3: hash_message(metadata), 4: signature} # TODO Write the correct address when the metadata is transparent.
cbor_data = {2: metadata, 3: hash_message(metadata)}
authenticator.send_cbor( authenticator.send_cbor(
OPENSK_VENDOR_UPGRADE, OPENSK_VENDOR_UPGRADE,
data=cbor_data, data=cbor_data,
) )
except ctap.CtapError as ex: except ctap.CtapError as ex:
message = "Failed to upgrade OpenSK" message = "Failed to upgrade OpenSK"
if ex.code.value == ctap.CtapError.ERR.INVALID_COMMAND: if ex.code.value == ctap.CtapError.ERR.INVALID_COMMAND:
@@ -263,4 +270,10 @@ if __name__ == "__main__":
dest="use_vendor_hid", dest="use_vendor_hid",
help=("Whether to upgrade the device using the Vendor HID interface."), help=("Whether to upgrade the device using the Vendor HID interface."),
) )
parser.add_argument(
"--version",
type=int,
dest="version",
help=("Firmware version that is built."),
)
main(parser.parse_args()) main(parser.parse_args())