Merge branch 'develop' into v2_optim

This commit is contained in:
Julien Cretin
2021-01-18 16:10:08 +01:00
36 changed files with 2849 additions and 1264 deletions

View File

@@ -1,4 +1,4 @@
// Copyright 2019 Google LLC
// Copyright 2019-2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@@ -14,20 +14,19 @@
mod key;
#[cfg(feature = "with_ctap2_1")]
use crate::ctap::data_formats::{extract_array, extract_text_string};
use crate::ctap::data_formats::{CredentialProtectionPolicy, PublicKeyCredentialSource};
use crate::ctap::data_formats::{
extract_array, extract_text_string, CredentialProtectionPolicy, PublicKeyCredentialSource,
PublicKeyCredentialUserEntity,
};
use crate::ctap::key_material;
use crate::ctap::pin_protocol_v1::PIN_AUTH_LENGTH;
use crate::ctap::status_code::Ctap2StatusCode;
use crate::ctap::INITIAL_SIGNATURE_COUNTER;
use crate::embedded_flash::{new_storage, Storage};
#[cfg(feature = "with_ctap2_1")]
use alloc::string::String;
use alloc::vec;
use alloc::vec::Vec;
use arrayref::array_ref;
#[cfg(feature = "with_ctap2_1")]
use cbor::cbor_array_vec;
use core::convert::TryInto;
use crypto::rng256::Rng256;
@@ -39,11 +38,11 @@ use crypto::rng256::Rng256;
// number of pages. This may improve in the future. Currently, using 20 pages gives between 20ms and
// 240ms per operation. The rule of thumb is between 1ms and 12ms per additional page.
//
// Limiting the number of residential keys permits to ensure a minimum number of counter increments.
// Limiting the number of resident keys permits to ensure a minimum number of counter increments.
// Let:
// - P the number of pages (NUM_PAGES)
// - K the maximum number of residential keys (MAX_SUPPORTED_RESIDENTIAL_KEYS)
// - S the maximum size of a residential key (about 500)
// - K the maximum number of resident keys (MAX_SUPPORTED_RESIDENT_KEYS)
// - S the maximum size of a resident key (about 500)
// - C the number of erase cycles (10000)
// - I the minimum number of counter increments
//
@@ -51,18 +50,14 @@ use crypto::rng256::Rng256;
//
// With P=20 and K=150, we have I=2M which is enough for 500 increments per day for 10 years.
const NUM_PAGES: usize = 20;
const MAX_SUPPORTED_RESIDENTIAL_KEYS: usize = 150;
const MAX_SUPPORTED_RESIDENT_KEYS: usize = 150;
const MAX_PIN_RETRIES: u8 = 8;
#[cfg(feature = "with_ctap2_1")]
const DEFAULT_MIN_PIN_LENGTH: u8 = 4;
// TODO(kaczmarczyck) use this for the minPinLength extension
// https://github.com/google/OpenSK/issues/129
#[cfg(feature = "with_ctap2_1")]
const _DEFAULT_MIN_PIN_LENGTH_RP_IDS: Vec<String> = Vec::new();
// TODO(kaczmarczyck) Check whether this constant is necessary, or replace it accordingly.
#[cfg(feature = "with_ctap2_1")]
const _MAX_RP_IDS_LENGTH: usize = 8;
const DEFAULT_MIN_PIN_LENGTH_RP_IDS: Vec<String> = Vec::new();
// This constant is an attempt to limit storage requirements. If you don't set it to 0,
// the stored strings can still be unbounded, but that is true for all RP IDs.
const MAX_RP_IDS_LENGTH: usize = 8;
/// Wrapper for master keys.
pub struct MasterKeys {
@@ -73,6 +68,15 @@ pub struct MasterKeys {
pub hmac: [u8; 32],
}
/// Wrapper for PIN properties.
struct PinProperties {
/// 16 byte prefix of SHA256 of the currently set PIN.
hash: [u8; PIN_AUTH_LENGTH],
/// Length of the current PIN in code points.
code_point_length: u8,
}
/// CTAP persistent storage.
pub struct PersistentStore {
store: persistent_store::Store<Storage>,
@@ -115,34 +119,51 @@ impl PersistentStore {
self.store.insert(key::CRED_RANDOM_SECRET, &cred_random)?;
}
// TODO(jmichel): remove this when vendor command is in place
#[cfg(not(test))]
self.load_attestation_data_from_firmware()?;
if self.store.find_handle(key::AAGUID)?.is_none() {
self.set_aaguid(key_material::AAGUID)?;
}
Ok(())
}
// TODO(jmichel): remove this function when vendor command is in place.
#[cfg(not(test))]
fn load_attestation_data_from_firmware(&mut self) -> Result<(), Ctap2StatusCode> {
// The following 2 entries are meant to be written by vendor-specific commands.
if self
.store
.find_handle(key::ATTESTATION_PRIVATE_KEY)?
.is_none()
{
self.set_attestation_private_key(key_material::ATTESTATION_PRIVATE_KEY)?;
/// Returns the credential at the given key.
///
/// # Errors
///
/// Returns `CTAP2_ERR_VENDOR_INTERNAL_ERROR` if the key does not hold a valid credential.
pub fn get_credential(&self, key: usize) -> Result<PublicKeyCredentialSource, Ctap2StatusCode> {
let min_key = key::CREDENTIALS.start;
if key < min_key || key >= min_key + MAX_SUPPORTED_RESIDENT_KEYS {
return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR);
}
if self
let credential_entry = self
.store
.find_handle(key::ATTESTATION_CERTIFICATE)?
.is_none()
{
self.set_attestation_certificate(key_material::ATTESTATION_CERTIFICATE)?;
.find(key)?
.ok_or(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?;
deserialize_credential(&credential_entry)
.ok_or(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)
}
/// Finds the key and value for a given credential ID.
///
/// # Errors
///
/// Returns `CTAP2_ERR_NO_CREDENTIALS` if the credential is not found.
fn find_credential_item(
&self,
credential_id: &[u8],
) -> Result<(usize, PublicKeyCredentialSource), Ctap2StatusCode> {
let mut iter_result = Ok(());
let iter = self.iter_credentials(&mut iter_result)?;
let mut credentials: Vec<(usize, PublicKeyCredentialSource)> = iter
.filter(|(_, credential)| credential.credential_id == credential_id)
.collect();
iter_result?;
if credentials.len() > 1 {
return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR);
}
Ok(())
credentials
.pop()
.ok_or(Ctap2StatusCode::CTAP2_ERR_NO_CREDENTIALS)
}
/// Returns the first matching credential.
@@ -155,22 +176,17 @@ impl PersistentStore {
credential_id: &[u8],
check_cred_protect: bool,
) -> Result<Option<PublicKeyCredentialSource>, Ctap2StatusCode> {
let mut iter_result = Ok(());
let iter = self.iter_credentials(&mut iter_result)?;
// We don't check whether there is more than one matching credential to be able to exit
// early.
let result = iter.map(|(_, credential)| credential).find(|credential| {
credential.rp_id == rp_id && credential.credential_id == credential_id
});
iter_result?;
if let Some(cred) = &result {
let user_verification_required = cred.cred_protect_policy
== Some(CredentialProtectionPolicy::UserVerificationRequired);
if check_cred_protect && user_verification_required {
return Ok(None);
}
let credential = match self.find_credential_item(credential_id) {
Err(Ctap2StatusCode::CTAP2_ERR_NO_CREDENTIALS) => return Ok(None),
Err(e) => return Err(e),
Ok((_key, credential)) => credential,
};
let is_protected = credential.cred_protect_policy
== Some(CredentialProtectionPolicy::UserVerificationRequired);
if credential.rp_id != rp_id || (check_cred_protect && is_protected) {
return Ok(None);
}
Ok(result)
Ok(Some(credential))
}
/// Stores or updates a credential.
@@ -184,13 +200,11 @@ impl PersistentStore {
let mut old_key = None;
let min_key = key::CREDENTIALS.start;
// Holds whether a key is used (indices are shifted by min_key).
let mut keys = vec![false; MAX_SUPPORTED_RESIDENTIAL_KEYS];
let mut keys = vec![false; MAX_SUPPORTED_RESIDENT_KEYS];
let mut iter_result = Ok(());
let iter = self.iter_credentials(&mut iter_result)?;
for (key, credential) in iter {
if key < min_key
|| key - min_key >= MAX_SUPPORTED_RESIDENTIAL_KEYS
|| keys[key - min_key]
if key < min_key || key - min_key >= MAX_SUPPORTED_RESIDENT_KEYS || keys[key - min_key]
{
return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR);
}
@@ -205,16 +219,14 @@ impl PersistentStore {
}
}
iter_result?;
if old_key.is_none()
&& keys.iter().filter(|&&x| x).count() >= MAX_SUPPORTED_RESIDENTIAL_KEYS
{
if old_key.is_none() && keys.iter().filter(|&&x| x).count() >= MAX_SUPPORTED_RESIDENT_KEYS {
return Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL);
}
let key = match old_key {
// This is a new credential being added, we need to allocate a free key. We choose the
// first available key.
None => key::CREDENTIALS
.take(MAX_SUPPORTED_RESIDENTIAL_KEYS)
.take(MAX_SUPPORTED_RESIDENT_KEYS)
.find(|key| !keys[key - min_key])
.ok_or(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)?,
// This is an existing credential being updated, we reuse its key.
@@ -225,32 +237,35 @@ impl PersistentStore {
Ok(())
}
/// Returns the list of matching credentials.
/// Deletes a credential.
///
/// Does not return credentials that are not discoverable if `check_cred_protect` is set.
pub fn filter_credential(
&self,
rp_id: &str,
check_cred_protect: bool,
) -> Result<Vec<PublicKeyCredentialSource>, Ctap2StatusCode> {
let mut iter_result = Ok(());
let iter = self.iter_credentials(&mut iter_result)?;
let result = iter
.filter_map(|(_, credential)| {
if credential.rp_id == rp_id {
Some(credential)
} else {
None
}
})
.filter(|cred| !check_cred_protect || cred.is_discoverable())
.collect();
iter_result?;
Ok(result)
/// # Errors
///
/// Returns `CTAP2_ERR_NO_CREDENTIALS` if the credential is not found.
pub fn _delete_credential(&mut self, credential_id: &[u8]) -> Result<(), Ctap2StatusCode> {
let (key, _) = self.find_credential_item(credential_id)?;
Ok(self.store.remove(key)?)
}
/// Updates a credential's user information.
///
/// # Errors
///
/// Returns `CTAP2_ERR_NO_CREDENTIALS` if the credential is not found.
pub fn _update_credential(
&mut self,
credential_id: &[u8],
user: PublicKeyCredentialUserEntity,
) -> Result<(), Ctap2StatusCode> {
let (key, mut credential) = self.find_credential_item(credential_id)?;
credential.user_name = user.user_name;
credential.user_display_name = user.user_display_name;
credential.user_icon = user.user_icon;
let value = serialize_credential(credential)?;
Ok(self.store.insert(key, &value)?)
}
/// Returns the number of credentials.
#[cfg(test)]
pub fn count_credentials(&self) -> Result<usize, Ctap2StatusCode> {
let mut iter_result = Ok(());
let iter = self.iter_credentials(&mut iter_result)?;
@@ -259,10 +274,17 @@ impl PersistentStore {
Ok(result)
}
/// Returns the estimated number of credentials that can still be stored.
pub fn remaining_credentials(&self) -> Result<usize, Ctap2StatusCode> {
MAX_SUPPORTED_RESIDENT_KEYS
.checked_sub(self.count_credentials()?)
.ok_or(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)
}
/// Iterates through the credentials.
///
/// If an error is encountered during iteration, it is written to `result`.
fn iter_credentials<'a>(
pub fn iter_credentials<'a>(
&'a self,
result: &'a mut Result<(), Ctap2StatusCode>,
) -> Result<IterCredentials<'a>, Ctap2StatusCode> {
@@ -325,26 +347,44 @@ impl PersistentStore {
Ok(*array_ref![cred_random_secret, offset, 32])
}
/// Returns the PIN hash if defined.
pub fn pin_hash(&self) -> Result<Option<[u8; PIN_AUTH_LENGTH]>, Ctap2StatusCode> {
let pin_hash = match self.store.find(key::PIN_HASH)? {
/// Reads the PIN properties and wraps them into PinProperties.
fn pin_properties(&self) -> Result<Option<PinProperties>, Ctap2StatusCode> {
let pin_properties = match self.store.find(key::PIN_PROPERTIES)? {
None => return Ok(None),
Some(pin_hash) => pin_hash,
Some(pin_properties) => pin_properties,
};
if pin_hash.len() != PIN_AUTH_LENGTH {
return Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR);
const PROPERTIES_LENGTH: usize = PIN_AUTH_LENGTH + 1;
match pin_properties.len() {
PROPERTIES_LENGTH => Ok(Some(PinProperties {
hash: *array_ref![pin_properties, 1, PIN_AUTH_LENGTH],
code_point_length: pin_properties[0],
})),
_ => Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR),
}
Ok(Some(*array_ref![pin_hash, 0, PIN_AUTH_LENGTH]))
}
/// Sets the PIN hash.
/// Returns the PIN hash if defined.
pub fn pin_hash(&self) -> Result<Option<[u8; PIN_AUTH_LENGTH]>, Ctap2StatusCode> {
Ok(self.pin_properties()?.map(|p| p.hash))
}
/// Returns the length of the currently set PIN if defined.
pub fn pin_code_point_length(&self) -> Result<Option<u8>, Ctap2StatusCode> {
Ok(self.pin_properties()?.map(|p| p.code_point_length))
}
/// Sets the PIN hash and length.
///
/// If it was already defined, it is updated.
pub fn set_pin_hash(
pub fn set_pin(
&mut self,
pin_hash: &[u8; PIN_AUTH_LENGTH],
pin_code_point_length: u8,
) -> Result<(), Ctap2StatusCode> {
Ok(self.store.insert(key::PIN_HASH, pin_hash)?)
let mut pin_properties = [0; 1 + PIN_AUTH_LENGTH];
pin_properties[0] = pin_code_point_length;
pin_properties[1..].clone_from_slice(pin_hash);
Ok(self.store.insert(key::PIN_PROPERTIES, &pin_properties)?)
}
/// Returns the number of remaining PIN retries.
@@ -372,7 +412,6 @@ impl PersistentStore {
}
/// Returns the minimum PIN length.
#[cfg(feature = "with_ctap2_1")]
pub fn min_pin_length(&self) -> Result<u8, Ctap2StatusCode> {
match self.store.find(key::MIN_PIN_LENGTH)? {
None => Ok(DEFAULT_MIN_PIN_LENGTH),
@@ -382,43 +421,40 @@ impl PersistentStore {
}
/// Sets the minimum PIN length.
#[cfg(feature = "with_ctap2_1")]
pub fn set_min_pin_length(&mut self, min_pin_length: u8) -> Result<(), Ctap2StatusCode> {
Ok(self.store.insert(key::MIN_PIN_LENGTH, &[min_pin_length])?)
}
/// Returns the list of RP IDs that are used to check if reading the minimum PIN length is
/// allowed.
#[cfg(feature = "with_ctap2_1")]
pub fn _min_pin_length_rp_ids(&self) -> Result<Vec<String>, Ctap2StatusCode> {
pub fn min_pin_length_rp_ids(&self) -> Result<Vec<String>, Ctap2StatusCode> {
let rp_ids = self
.store
.find(key::_MIN_PIN_LENGTH_RP_IDS)?
.map_or(Some(_DEFAULT_MIN_PIN_LENGTH_RP_IDS), |value| {
_deserialize_min_pin_length_rp_ids(&value)
.find(key::MIN_PIN_LENGTH_RP_IDS)?
.map_or(Some(DEFAULT_MIN_PIN_LENGTH_RP_IDS), |value| {
deserialize_min_pin_length_rp_ids(&value)
});
debug_assert!(rp_ids.is_some());
Ok(rp_ids.unwrap_or(vec![]))
Ok(rp_ids.unwrap_or_default())
}
/// Sets the list of RP IDs that are used to check if reading the minimum PIN length is allowed.
#[cfg(feature = "with_ctap2_1")]
pub fn _set_min_pin_length_rp_ids(
pub fn set_min_pin_length_rp_ids(
&mut self,
min_pin_length_rp_ids: Vec<String>,
) -> Result<(), Ctap2StatusCode> {
let mut min_pin_length_rp_ids = min_pin_length_rp_ids;
for rp_id in _DEFAULT_MIN_PIN_LENGTH_RP_IDS {
for rp_id in DEFAULT_MIN_PIN_LENGTH_RP_IDS {
if !min_pin_length_rp_ids.contains(&rp_id) {
min_pin_length_rp_ids.push(rp_id);
}
}
if min_pin_length_rp_ids.len() > _MAX_RP_IDS_LENGTH {
if min_pin_length_rp_ids.len() > MAX_RP_IDS_LENGTH {
return Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL);
}
Ok(self.store.insert(
key::_MIN_PIN_LENGTH_RP_IDS,
&_serialize_min_pin_length_rp_ids(min_pin_length_rp_ids)?,
key::MIN_PIN_LENGTH_RP_IDS,
&serialize_min_pin_length_rp_ids(min_pin_length_rp_ids)?,
)?)
}
@@ -504,6 +540,11 @@ impl PersistentStore {
self.init(rng)?;
Ok(())
}
pub fn force_pin_change(&mut self) -> Result<(), Ctap2StatusCode> {
// TODO(kaczmarczyck) implement storage logic
Ok(())
}
}
impl From<persistent_store::StoreError> for Ctap2StatusCode {
@@ -527,7 +568,7 @@ impl From<persistent_store::StoreError> for Ctap2StatusCode {
}
/// Iterator for credentials.
struct IterCredentials<'a> {
pub struct IterCredentials<'a> {
/// The store being iterated.
store: &'a persistent_store::Store<Storage>,
@@ -601,13 +642,12 @@ fn serialize_credential(credential: PublicKeyCredentialSource) -> Result<Vec<u8>
if cbor::write(credential.into(), &mut data) {
Ok(data)
} else {
Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_RESPONSE_CANNOT_WRITE_CBOR)
Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)
}
}
/// Deserializes a list of RP IDs from storage representation.
#[cfg(feature = "with_ctap2_1")]
fn _deserialize_min_pin_length_rp_ids(data: &[u8]) -> Option<Vec<String>> {
fn deserialize_min_pin_length_rp_ids(data: &[u8]) -> Option<Vec<String>> {
let cbor = cbor::read(data).ok()?;
extract_array(cbor)
.ok()?
@@ -618,13 +658,12 @@ fn _deserialize_min_pin_length_rp_ids(data: &[u8]) -> Option<Vec<String>> {
}
/// Serializes a list of RP IDs to storage representation.
#[cfg(feature = "with_ctap2_1")]
fn _serialize_min_pin_length_rp_ids(rp_ids: Vec<String>) -> Result<Vec<u8>, Ctap2StatusCode> {
fn serialize_min_pin_length_rp_ids(rp_ids: Vec<String>) -> Result<Vec<u8>, Ctap2StatusCode> {
let mut data = Vec::new();
if cbor::write(cbor_array_vec!(rp_ids), &mut data) {
Ok(data)
} else {
Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_RESPONSE_CANNOT_WRITE_CBOR)
Err(Ctap2StatusCode::CTAP2_ERR_VENDOR_INTERNAL_ERROR)
}
}
@@ -664,6 +703,66 @@ mod test {
assert!(persistent_store.count_credentials().unwrap() > 0);
}
#[test]
fn test_delete_credential() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
let mut credential_ids = vec![];
for i in 0..MAX_SUPPORTED_RESIDENT_KEYS {
let user_handle = i.to_ne_bytes().to_vec();
let credential_source = create_credential_source(&mut rng, "example.com", user_handle);
credential_ids.push(credential_source.credential_id.clone());
assert!(persistent_store.store_credential(credential_source).is_ok());
assert_eq!(persistent_store.count_credentials().unwrap(), i + 1);
}
let mut count = persistent_store.count_credentials().unwrap();
for credential_id in credential_ids {
assert!(persistent_store._delete_credential(&credential_id).is_ok());
count -= 1;
assert_eq!(persistent_store.count_credentials().unwrap(), count);
}
}
#[test]
fn test_update_credential() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
let user = PublicKeyCredentialUserEntity {
// User ID is ignored.
user_id: vec![0x00],
user_name: Some("name".to_string()),
user_display_name: Some("display_name".to_string()),
user_icon: Some("icon".to_string()),
};
assert_eq!(
persistent_store._update_credential(&[0x1D], user.clone()),
Err(Ctap2StatusCode::CTAP2_ERR_NO_CREDENTIALS)
);
let credential_source = create_credential_source(&mut rng, "example.com", vec![0x1D]);
let credential_id = credential_source.credential_id.clone();
assert!(persistent_store.store_credential(credential_source).is_ok());
let stored_credential = persistent_store
.find_credential("example.com", &credential_id, false)
.unwrap()
.unwrap();
assert_eq!(stored_credential.user_name, None);
assert_eq!(stored_credential.user_display_name, None);
assert_eq!(stored_credential.user_icon, None);
assert!(persistent_store
._update_credential(&credential_id, user.clone())
.is_ok());
let stored_credential = persistent_store
.find_credential("example.com", &credential_id, false)
.unwrap()
.unwrap();
assert_eq!(stored_credential.user_name, user.user_name);
assert_eq!(stored_credential.user_display_name, user.user_display_name);
assert_eq!(stored_credential.user_icon, user.user_icon);
}
#[test]
fn test_credential_order() {
let mut rng = ThreadRng256 {};
@@ -680,24 +779,21 @@ mod test {
}
#[test]
#[allow(clippy::assertions_on_constants)]
fn test_fill_store() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
// To make this test work for bigger storages, implement better int -> Vec conversion.
assert!(MAX_SUPPORTED_RESIDENTIAL_KEYS < 256);
for i in 0..MAX_SUPPORTED_RESIDENTIAL_KEYS {
let credential_source =
create_credential_source(&mut rng, "example.com", vec![i as u8]);
for i in 0..MAX_SUPPORTED_RESIDENT_KEYS {
let user_handle = i.to_ne_bytes().to_vec();
let credential_source = create_credential_source(&mut rng, "example.com", user_handle);
assert!(persistent_store.store_credential(credential_source).is_ok());
assert_eq!(persistent_store.count_credentials().unwrap(), i + 1);
}
let credential_source = create_credential_source(
&mut rng,
"example.com",
vec![MAX_SUPPORTED_RESIDENTIAL_KEYS as u8],
vec![MAX_SUPPORTED_RESIDENT_KEYS as u8],
);
assert_eq!(
persistent_store.store_credential(credential_source),
@@ -705,12 +801,11 @@ mod test {
);
assert_eq!(
persistent_store.count_credentials().unwrap(),
MAX_SUPPORTED_RESIDENTIAL_KEYS
MAX_SUPPORTED_RESIDENT_KEYS
);
}
#[test]
#[allow(clippy::assertions_on_constants)]
fn test_overwrite() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
@@ -718,7 +813,8 @@ mod test {
// These should have different IDs.
let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]);
let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x00]);
let expected_credential = credential_source1.clone();
let credential_id0 = credential_source0.credential_id.clone();
let credential_id1 = credential_source1.credential_id.clone();
assert!(persistent_store
.store_credential(credential_source0)
@@ -727,25 +823,26 @@ mod test {
.store_credential(credential_source1)
.is_ok());
assert_eq!(persistent_store.count_credentials().unwrap(), 1);
assert_eq!(
&persistent_store
.filter_credential("example.com", false)
.unwrap(),
&[expected_credential]
);
assert!(persistent_store
.find_credential("example.com", &credential_id0, false)
.unwrap()
.is_none());
assert!(persistent_store
.find_credential("example.com", &credential_id1, false)
.unwrap()
.is_some());
// To make this test work for bigger storages, implement better int -> Vec conversion.
assert!(MAX_SUPPORTED_RESIDENTIAL_KEYS < 256);
for i in 0..MAX_SUPPORTED_RESIDENTIAL_KEYS {
let credential_source =
create_credential_source(&mut rng, "example.com", vec![i as u8]);
let mut persistent_store = PersistentStore::new(&mut rng);
for i in 0..MAX_SUPPORTED_RESIDENT_KEYS {
let user_handle = i.to_ne_bytes().to_vec();
let credential_source = create_credential_source(&mut rng, "example.com", user_handle);
assert!(persistent_store.store_credential(credential_source).is_ok());
assert_eq!(persistent_store.count_credentials().unwrap(), i + 1);
}
let credential_source = create_credential_source(
&mut rng,
"example.com",
vec![MAX_SUPPORTED_RESIDENTIAL_KEYS as u8],
vec![MAX_SUPPORTED_RESIDENT_KEYS as u8],
);
assert_eq!(
persistent_store.store_credential(credential_source),
@@ -753,69 +850,26 @@ mod test {
);
assert_eq!(
persistent_store.count_credentials().unwrap(),
MAX_SUPPORTED_RESIDENTIAL_KEYS
MAX_SUPPORTED_RESIDENT_KEYS
);
}
#[test]
fn test_filter() {
fn test_get_credential() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]);
let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x01]);
let credential_source2 =
create_credential_source(&mut rng, "another.example.com", vec![0x02]);
let id0 = credential_source0.credential_id.clone();
let id1 = credential_source1.credential_id.clone();
assert!(persistent_store
.store_credential(credential_source0)
.is_ok());
assert!(persistent_store
.store_credential(credential_source1)
.is_ok());
assert!(persistent_store
.store_credential(credential_source2)
.is_ok());
let filtered_credentials = persistent_store
.filter_credential("example.com", false)
.unwrap();
assert_eq!(filtered_credentials.len(), 2);
assert!(
(filtered_credentials[0].credential_id == id0
&& filtered_credentials[1].credential_id == id1)
|| (filtered_credentials[1].credential_id == id0
&& filtered_credentials[0].credential_id == id1)
);
}
#[test]
fn test_filter_with_cred_protect() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
assert_eq!(persistent_store.count_credentials().unwrap(), 0);
let private_key = crypto::ecdsa::SecKey::gensk(&mut rng);
let credential = PublicKeyCredentialSource {
key_type: PublicKeyCredentialType::PublicKey,
credential_id: rng.gen_uniform_u8x32().to_vec(),
private_key,
rp_id: String::from("example.com"),
user_handle: vec![0x00],
user_display_name: None,
cred_protect_policy: Some(
CredentialProtectionPolicy::UserVerificationOptionalWithCredentialIdList,
),
creation_order: 0,
user_name: None,
user_icon: None,
};
assert!(persistent_store.store_credential(credential).is_ok());
let no_credential = persistent_store
.filter_credential("example.com", true)
.unwrap();
assert_eq!(no_credential, vec![]);
let credential_sources = vec![credential_source0, credential_source1, credential_source2];
for credential_source in credential_sources.into_iter() {
let cred_id = credential_source.credential_id.clone();
assert!(persistent_store.store_credential(credential_source).is_ok());
let (key, _) = persistent_store.find_credential_item(&cred_id).unwrap();
let cred = persistent_store.get_credential(key).unwrap();
assert_eq!(&cred_id, &cred.credential_id);
}
}
#[test]
@@ -926,28 +980,38 @@ mod test {
}
#[test]
fn test_pin_hash() {
fn test_pin_hash_and_length() {
let mut rng = ThreadRng256 {};
let mut persistent_store = PersistentStore::new(&mut rng);
// Pin hash is initially not set.
assert!(persistent_store.pin_hash().unwrap().is_none());
assert!(persistent_store.pin_code_point_length().unwrap().is_none());
// Setting the pin hash sets the pin hash.
// Setting the pin sets the pin hash.
let random_data = rng.gen_uniform_u8x32();
assert_eq!(random_data.len(), 2 * PIN_AUTH_LENGTH);
let pin_hash_1 = *array_ref!(random_data, 0, PIN_AUTH_LENGTH);
let pin_hash_2 = *array_ref!(random_data, PIN_AUTH_LENGTH, PIN_AUTH_LENGTH);
persistent_store.set_pin_hash(&pin_hash_1).unwrap();
let pin_length_1 = 4;
let pin_length_2 = 63;
persistent_store.set_pin(&pin_hash_1, pin_length_1).unwrap();
assert_eq!(persistent_store.pin_hash().unwrap(), Some(pin_hash_1));
assert_eq!(persistent_store.pin_hash().unwrap(), Some(pin_hash_1));
persistent_store.set_pin_hash(&pin_hash_2).unwrap();
assert_eq!(persistent_store.pin_hash().unwrap(), Some(pin_hash_2));
assert_eq!(
persistent_store.pin_code_point_length().unwrap(),
Some(pin_length_1)
);
persistent_store.set_pin(&pin_hash_2, pin_length_2).unwrap();
assert_eq!(persistent_store.pin_hash().unwrap(), Some(pin_hash_2));
assert_eq!(
persistent_store.pin_code_point_length().unwrap(),
Some(pin_length_2)
);
// Resetting the storage resets the pin hash.
persistent_store.reset(&mut rng).unwrap();
assert!(persistent_store.pin_hash().unwrap().is_none());
assert!(persistent_store.pin_code_point_length().unwrap().is_none());
}
#[test]
@@ -988,12 +1052,14 @@ mod test {
.unwrap()
.is_none());
// Make sure the persistent keys are initialized.
// Make sure the persistent keys are initialized to dummy values.
let dummy_key = [0x41u8; key_material::ATTESTATION_PRIVATE_KEY_LENGTH];
let dummy_cert = [0xddu8; 20];
persistent_store
.set_attestation_private_key(key_material::ATTESTATION_PRIVATE_KEY)
.set_attestation_private_key(&dummy_key)
.unwrap();
persistent_store
.set_attestation_certificate(key_material::ATTESTATION_CERTIFICATE)
.set_attestation_certificate(&dummy_cert)
.unwrap();
assert_eq!(&persistent_store.aaguid().unwrap(), key_material::AAGUID);
@@ -1001,16 +1067,15 @@ mod test {
persistent_store.reset(&mut rng).unwrap();
assert_eq!(
&persistent_store.attestation_private_key().unwrap().unwrap(),
key_material::ATTESTATION_PRIVATE_KEY
&dummy_key
);
assert_eq!(
persistent_store.attestation_certificate().unwrap().unwrap(),
key_material::ATTESTATION_CERTIFICATE
&dummy_cert
);
assert_eq!(&persistent_store.aaguid().unwrap(), key_material::AAGUID);
}
#[cfg(feature = "with_ctap2_1")]
#[test]
fn test_min_pin_length() {
let mut rng = ThreadRng256 {};
@@ -1033,7 +1098,6 @@ mod test {
);
}
#[cfg(feature = "with_ctap2_1")]
#[test]
fn test_min_pin_length_rp_ids() {
let mut rng = ThreadRng256 {};
@@ -1041,22 +1105,22 @@ mod test {
// The minimum PIN length RP IDs are initially at the default.
assert_eq!(
persistent_store._min_pin_length_rp_ids().unwrap(),
_DEFAULT_MIN_PIN_LENGTH_RP_IDS
persistent_store.min_pin_length_rp_ids().unwrap(),
DEFAULT_MIN_PIN_LENGTH_RP_IDS
);
// Changes by the setter are reflected by the getter.
let mut rp_ids = vec![String::from("example.com")];
assert_eq!(
persistent_store._set_min_pin_length_rp_ids(rp_ids.clone()),
persistent_store.set_min_pin_length_rp_ids(rp_ids.clone()),
Ok(())
);
for rp_id in _DEFAULT_MIN_PIN_LENGTH_RP_IDS {
for rp_id in DEFAULT_MIN_PIN_LENGTH_RP_IDS {
if !rp_ids.contains(&rp_id) {
rp_ids.push(rp_id);
}
}
assert_eq!(persistent_store._min_pin_length_rp_ids().unwrap(), rp_ids);
assert_eq!(persistent_store.min_pin_length_rp_ids().unwrap(), rp_ids);
}
#[test]
@@ -1102,12 +1166,11 @@ mod test {
assert_eq!(credential, reconstructed);
}
#[cfg(feature = "with_ctap2_1")]
#[test]
fn test_serialize_deserialize_min_pin_length_rp_ids() {
let rp_ids = vec![String::from("example.com")];
let serialized = _serialize_min_pin_length_rp_ids(rp_ids.clone()).unwrap();
let reconstructed = _deserialize_min_pin_length_rp_ids(&serialized).unwrap();
let serialized = serialize_min_pin_length_rp_ids(rp_ids.clone()).unwrap();
let reconstructed = deserialize_min_pin_length_rp_ids(&serialized).unwrap();
assert_eq!(rp_ids, reconstructed);
}
}